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A rigorous first order shear deformation theory (FSDT) is employed along with 

modified ABD parameters to analyze static and free vibration behavior of generally 

laminated beams and shafts. Different approaches for calculating composite beam 

stiffness parameters have been considered and the most accurate one that accounts for 

material couplings have been used to analyze static and free vibration behaviors of 

straight beams with different laminates and boundary conditions. In order to analyze 

curved beams, the term (1+z/R) is exactly integrated into ABD parameters formulation 

and an equivalent modulus of elasticity is used instead of traditional stiffness terms to 

account for both the deepness and material coupling of the beam structures. The model 

has been solved analytically for simply supported boundary conditions and the general 

differential quadrature (GDQ) technique has been used for other boundary conditions.  

The results for deflection, moment resultants, and natural frequencies of straight 

and curved beams with different deepness ratio (often called depth ratio), slenderness 

ratio, lamination, and boundary conditions are compared with those obtained from 
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accurate three dimensional finite element simulations using ANSYS. The results were in 

close proximity to three dimensional finite element results. The model is then applied to 

transverse vibration analysis of multi-span generally laminated composite shafts with a 

lumped mass using GDQ. The results for natural frequencies are compared to 

experimental and other analytical models as well as finite element simulation. The results 

in the present analyses were found accurate. Conclusively, it has been shown that when 

considering more accurate stiffness parameters, a First Order Shear Deformation Theory 

can accurately predict static and free vibration behaviors of composite beams and multi-

span shafts of any deepness, lamination and boundary conditions. 
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CHAPTER I  

INTRODUCTION 

 

 

A structural element having one dimension many times greater than its other 

dimensions can be a rod, a bar, a column, or a beam. The definition actually depends on 

the loading conditions. A beam is a member mainly subjected to bending. The terms rod 

(or bar) and column are for those members that are mainly subjected to axial tension and 

compression, respectively. Beams are one of the fundamental structural or machine 

components and can be made of any material. Metallic beams as well as composite beams 

are used in different industries. Buildings, steel framed structures and bridges are 

examples of beam applications in civil engineering. In these applications, beams exist as 

structural elements or components supporting the whole structure. In addition, the whole 

structure can be modeled at a preliminary level as a beam. For example, a high rise 

building can be modeled as a cantilever beam, or a bridge modeled as a simply supported 

beam. In mechanical engineering, rotating shafts carrying pulleys and gears are examples 

of beams. In addition, frames in machines (e.g. a truck) are beams. Robotic arms in 

manufacturing are modeled as beams as well. In aerospace engineering, beams (curved 

and straight) are found in many areas of the plane or space vehicle. In addition, the whole 
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wing of a plane is often modeled as a beam for some preliminary analysis. Innumerable 

other examples in these and other industries of beams exist. 

Presently, the use of laminated composite beams, plates and shells in many 

engineering applications is rapidly expanding.  Their higher strength and stiffness to 

weight ratios, the ability to tailor the design for specific purposes, and advances in the 

manufacturing methods, give them a competitive edge when compared with other 

engineering materials and lead to their extensive use.  

Composite beams are lightweight structures that can be found in many diverse 

applications including aerospace, marine, medical equipment, automotive, construction as 

well as others industries. Their weight savings has been of great interest because of its 

general positive impact on durability, light weight, corrosion resistance as well as other 

attributes including fuel economy, noise, vibration and harshness (NVH).  

On the other hand, composites have their own challenges in predicting failure, 

fatigue, or dynamic behaviors. The designers face much more complicated problems in 

designing such structures and they should broaden their knowledge to efficiently employ 

these benefits while considering all phenomena related to composites. Hence, the 

designers need comprehensive and easy to use formulas in any design problem.  

This thesis is concerned with the development of the fundamental equations for 

the mechanics of laminated composite beams with different configurations (straight and 

curved), Laminates (cross-ply, angle-ply, …), cross sections (rectangular, tubular), and 

boundary conditions (clamped, simply supported, free, …) which can be useful for design 

engineers.  
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It should be mentioned here that the treatment presented in this thesis considers 

beams vibrating (or deforming) in their plane of curvature. Different formulas for the 

static and vibration analysis of laminated beams would be reviewed and compared with 

the three dimensional finite element method (3D FEM) analyses. 3D FEM analyses are 

based on the 3D elasticity theory. Thus, they are the most accurate analytical procedure to 

analyze the structure. However, 3D FEM is a very expensive procedure demanding both 

expensive machines and longer computer times if used for large scale structures. In 

addition, these structures have two dimensions smaller than the third. For these structures, 

beam models are very efficient provided they are built on accurate models and are 

verified against 3D analyses as is done in this thesis.  

Two kinds of analyses will be performed in this thesis. First considered here is a 

static analysis where deflection and stress analyses for composite beams are performed. 

Second, dynamic analysis, where their natural frequencies and mode shapes are assessed. 

In many applications, deflection of the beam plays a key role in the design of the 

structure. For example, if an aircraft wing tip deflection becomes high, in addition to 

potential structural failure, it may deteriorate the wing aerodynamic performance. In this 

and other applications, beams can be subjected to dynamic loads. Imbalance in driveline 

shafts, combustion in crank shaft applications, wind on a bridge or a structure, earthquake 

loading on a bridge or a structure, impact load when a vehicle goes over a pump are all 

examples of possible dynamic loadings that beam structures can be exposed to. All of 

these loads and others can excite the vibration of the beam structure. This can cause 

durability concerns or discomfort because of the resulting noise and vibration. 
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Two classes of theories are developed for laminated beams. In the first class of 

theories, thin beams are studied where effects of shear deformation and rotary inertia are 

neglected. This class of theories will be referred to as thin beam theories or classical 

beam theories (CBT). This is typically accurate for thin beams and calculations of the 

most fundamental frequencies and is less accurate for thicker beams and higher 

frequencies. In the second class of theories, shear deformation and rotary inertia effects 

are considered. This class of theories will be referred to as thick beam theory or shear 

deformation beam theory (SDBT).  

The following topics will be considered in this thesis. In chapter 2 a 

comprehensive literature review has been done on the analysis of laminated beams 

between 1989 and 2010. Chapter 3 deals with static and vibration analysis of generally 

laminated straight thick beams with different boundary conditions. In chapter 4 the 

analyses in chapter 3 is done for curved beams with different deepness ratios, slenderness 

ratios, laminates, and boundary conditions. Chapter 5 considers generally laminated thick 

multi-segment shafts with lumped mass that are solved by general differential quadrature 

(GDQ) method. Chapter 6 summarizes and concludes the research done in this thesis. The 

chapters are written in a way that any chapter can be read independently and has its own 

introduction, theory, results and discussion and conclusion. 

The major contributions of this research are: 

 Develop a consistent set of equations that take into consideration deepness, shear 

deformation (and rotary inertia), and general lamination of laminated composite curved 

beams 
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 Test the accuracy of the set of equations using exact solutions for simply 

supported boundaries and comparing results with 3D analyses for composite curved 

beams under static and dynamic loads 

 Test the accuracy of the proposed set of equations for general boundary conditions 

using numerical methods 

 Apply the proposed set of equations to solve practical problems. A multi-

segmented composite shaft problem is solved for its vibrations. 
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CHAPTER  II 

 LITERATURE REVIEW 

 

Introduction 

Laminated composite beams, plates and shells have been used in extensive 

applications in many engineering fields in recent decades. Structures composed of 

composite materials offer lower weight and higher strength and stiffness than those 

composed of most metallic materials. These advantages coupled with ability to tailor 

designs for specific reasons, give them a competitive edge when compared with normal 

engineering materials and has led to their extensive use. Composite beams, plates and/or 

shell components now constitute a large percentage of recent aerospace and submarine 

structures. They have found increasing use in areas such as automotive engineering and 

other applications. Composite beams act as lightweight load carrying structures in diverse 

applications from aerospace and automotive to construction industries.  

Literature on composite beam research can be found in many conferences and 

journals. Kapania and Raciti  [1] made a review on advances in analysis of laminated 

beams and plates vibration and wave propagation in 1989. Rosen  [2] reviewed the 

research on static, dynamic, and stability analysis of pretwisted rods and beams in 1991. 

Chidamparam and Leissa  [3] reviewed the published literature on the vibrations of curved 
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bars, beams, rings and arches of arbitrary shape which lie in a plane in 1993. Also some 

books [4-7] discussed the analysis of composite beams, plates and shells. 

This section focuses on the last two decades of research (1989 through 2010) done 

on the dynamic analysis of composite beams. The literature is reviewed while focusing on 

various aspects of research. We will first review the various beam theories that are being 

used in research in recent years. These include thin (or classical), thick (or shear 

deformation), and layerwise beam theories. Then different methods for solving equations 

of motion such as transfer matrix method, finite element method and others will be 

reviewed. Another aspect of research will be the use of smart materials, which include 

piezoelectric, shape memory materials. Complicating effects will be the final category 

that will be addressed. This will include viscoelastic effects, added mass, rotating beam, 

beams with imperfections and so on. 

 

Beam Theories 

Beams are generally three dimensional (3D) bodies bounded by four, relatively 

close surfaces. The 3D equations of elasticity are generally unnecessarily complicated 

when written for a beam. Researchers simplify such equations by making certain 

assumptions for particular applications. Almost all beam theories reduce the 3D elasticity 

problem into a one dimensional (1D) problem. There are two issues typically treated for 

1D analysis of beams. The first problem is the issue of coupling and how to include the 

various couplings (stretching bending, bending twisting and others) that are ignored when 

reducing 3D equations to 1D. Since beams are 1D structural components, only the 
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parameters along x axis are considered and from 18 parameters on 6*6 ABD stiffness 

matrix, just three terms (A11, B11, D11) are used. 

 
N k

1111 k k 1
k 1

A bQ h h 


                                        (1) 

 2 2N k k k 1

1111
k 1

h h
B bQ

2





                                     (2) 

 3 3N k k k 1

1111
k 1

h h
D bQ

3





                                     (3) 

Note that the beam width in the above terms is included in the definitions of these 

terms, while it is customary to leave this term out in general laminate analysis. To 

overcome coupling problem, instead of normal definition of A11, B11, and D11, one may 

use equivalent stiffness parameters to find the equivalent ABD parameters.  

The second problem is the inclusion of shear deformation and rotary inertia. In 

classical theories, shear deformation and rotary inertia terms are ignored and is generally 

accurate for thin beams; while in shear deformation theories, some of those terms are 

included and accuracy for thick beams increases. Shear deformation theories with higher 

order than one are treated in one section in this chapter titled higher order shear 

deformation theories. 

 
 

Classical Beam Theory 

If the beam thickness is less than 1/20 of the wavelength of the deformation mode, 

a classical beam theory (CBT) or Euler Bernoulli (EB) beam theory where shear 

deformation and rotary inertia are negligible, is generally acceptable for lower frequency 

determination. Qatu  [8] and Qatu and Elsharkawi  [9] used CBT to study vibration of 
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straight and curved laminated beams. They used Ritz method for solving the equations of 

motion. Qatu and Iqbal  [10] used CBT to solve the vibration of a cross-ply laminated 

composite driveshaft with an intermediate joint. 

Mei  [11] studied the effect of coupling between bending and torsional 

deformations on vibrations of composite EB beams from a wave vibration standpoint. 

The torsional mode is found unaffected by the material coupling only at low frequencies. 

The flexural modes were found to be affected by material coupling over the entire 

frequency band. Mei  [12] also studied the local wave transmission and reflection 

characteristics at various discontinuities on composite beams. Gunda et al.  [13] 

investigated large amplitude vibration of laminated composite beams with axially 

immovable ends with symmetric and asymmetric layup orientations. They used the CBT 

and solved the equations by Rayleigh–Ritz (R–R) method. Geometric nonlinearity of 

von-Karman type was considered which accounts for the membrane stretching action of 

the beam. Ecsedi and Dluhi  [14] proposed a 1D mechanical model to analyze the static 

and dynamic feature of nonhomogeneous curved beams and closed rings. They expressed 

the equations of motion and the boundary conditions in terms of two kinematical 

variables. The first one was the radial displacement of cross-sections and the second one 

was the rotation of the cross-sections. 

 

Shear Deformation Theories 

The inclusion of shear deformation in the analysis of beams was first made by 

Timoshenko  [15]. So, theories considering shear deformation are called as Timoshenko 

beam theories. The inclusion of shear deformation in the analysis happens in developing 
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equations for displacement components. One approach for classification of beam theories 

is based on order of polynomial for approximation of displacements through the 

thickness. Suppose that the displacement u can be expressed as 

 
3

2
0 0 1 2 3( , ) , ( , )

w z w
u u z c c x t c z x t c x t

x h x
                       

                   (4)  

and ,  are the rotation of a line element perpendicular to the original direction in the x 

and y direction, respectively. For this equation, special cases are defined as  [6] 

The Classical Beam Theory (CBT): c0=-1, c1=0, c2=0, c3=0 

The First Order Shear Deformation Theory (FSDT): c0=0, c1=1, c2=0, c3=0 

The Second Order Shear Deformation Theory (SSDT): c0=0, c1=1, c2=1, c3=0 

The Third Order Shear Deformation Theory (TSDT): c0=0, c1=1, c2=0, c3=-(4/3)h 

 Suresh et al.  [16] investigated the effect of warping on the free vibration of 

torsional-flexural coupled beams. Abramovich  [17] studied free vibration of 

symmetrically laminated composite beams with the term representing the joint action of 

shear deformation and rotary inertia that was omitted in the Timoshenko equations. Song 

and Librescu investigated the formulation of the dynamic problem of laminated 

composite thick- and thin-walled, single-cell closed  [18] and open  [19] beams of arbitrary 

cross-section and their associated free vibration behavior. Banerjee [20, 21] proposed 

exact expressions for the frequency equation and mode shapes of symmetric beams with 

cantilever end conditions. He took into account the effect of material coupling between 

the bending and torsional modes of deformation together with the effects of shear 

deformation and rotary inertia. Cortinez and Piovan  [22] developed a theoretical model 

for the dynamic analysis of composite thin-walled beams with open or closed cross-
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sections. Their model incorporated the shear flexibility as well as a state of initial 

stresses. Lee et al.  [23] derived differential equations governing the free vibrations of 

elastic, horizontally curved beams with unsymmetric axes in cartesian coordinates, 

including the effect of torsional inertia. They computed numerically the frequencies and 

mode shapes for parabolic curved beams with both clamped ends and both hinged ends. 

In another research  [24] they included the effects of axial extension, shear deformation, 

and rotatory inertia. Karama et al.  [25] proposed a multi-layer laminated composite 

structure model to predict the mechanical behavior of multi-layered laminated composite 

structures using exponential function as a shear stress function. They validate the model 

for different cases in bending, buckling and free vibration on a cross-ply laminate. Kim et 

al.  [26] studied the effects of the steel core or casing on the bending natural frequency of 

composite shafts for simply supported boundary conditions.  

Li et al.  [27] analyzed the vibration of axially loaded symmetrically laminated thin-

walled beams with bending–torsion coupling by using the general solution of the 

equations of motion based on Timoshenko beam theory. Mei  [28] presented the effect of 

coupling between bending and torsional deformations on vibrations of symmetric 

composite Timoshenko beams from a wave vibration standpoint. He found that the 

torsional modes at low frequencies and cutoff transitional frequency are unaffected by 

material coupling.  Mei  [29] also presented wave vibration analysis of axially loaded 

bending-torsion coupled composite Timoshenko beam structures. 
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First Order Shear Deformation Theories 

First order Shear deformation theories (FSDT) were used by many authors. The 

work by Chandrashekhara et al.  [30], Krishnaswamy et al.  [31], Abramovich et al. [32, 

33] was validated for symmetric cross-ply laminates that have no coupling. In the FSDT 

model by Teboub and Hajela  [34] symmetric beams having fibers in one direction were 

considered. Bert and Kim  [35] proposed a FSDT for predicting the critical speed of a 

shear deformable, composite driveshaft. They modeled the shaft as a Bresse-Timoshenko 

beam (FSDT with rotary inertia and gyroscopic action) generalized to include tending-

twisting coupling. The FSDT models by Eisenberger et al.  [36] and Qatu  [37] for curved 

beams were also validated for cross-ply laminates.  

Hajianmaleki and Qatu [38-39] considered different stiffness parameters and 

showed that using equivalent modulus of elasticity of each lamina (eq. 5) for calculation 

of ABD parameters (eqs 6-9) one can reach a model capable of static and dynamic 

analysis of generally laminated thick beams and shafts using FSDT. 
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2 212
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Higher Order Shear Deformation Theories 

Some researchers developed and used higher order shear deformation theories 

(HSDT) for analysis of composite beams. Carrera and Petrolo  [40] worked on the 
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effectiveness of higher-order terms in refined beam theories. They concluded that the 

kinematics model that suits specific problem is determined by the cross-section geometry 

and the loading case. Khdier and Reddy  [41] determined natural frequencies of the third-

order, second-order, first-order and classical arch theories for cross-ply laminates. In 

another research they developed analytical solutions of refined beam theories to study the 

free vibration behavior of cross-ply rectangular beams with arbitrary boundary conditions 

in conjunction with the state space approach. They showed that the disagreement between 

different shear deformation theories is much less than the disagreement between any of 

them and EB theory  [42].  

Suresh and Nagaraj  [43] proposed a HSDT for the static and dynamic analysis of 

thin-walled composite beams of arbitrary lay-ups and cross sections. Their method was 

applicable to beams of open as well as closed cross sections and was validated by 

comparison with experimental and analytical results for static deflections of composite 

beams with symmetric and antisymmetric lay-ups. Song and Waas  [44] studied buckling 

and free vibration of stepped laminated composite beams using HSDT assuming a cubic 

distribution for the displacement field through the thickness. The results were compared 

to CBT and FSDT and did not show significant differences to those from Timoshenko 

theory for a wide range of aspect ratios of the beam geometry and material properties. 

Marur and Kant  [45] proposed three higher order refined displacement models for the free 

vibration analysis of sandwich and composite beams. All higher order models were found 

to compute frequencies which were numerically higher than those of FSDT for the thin 

beams considered. In the case of thick sandwiches, higher order theories give quite 

significantly lower frequencies than Timoshenko theory. Kant et al.  [46] proposed an 
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analytical higher order model using C0 continuity functions for symmetric laminates. 

Matsunaga  [47] studied vibration and buckling of cross-ply laminated beams according to 

HSDT. Subramanian  [48] proposed two higher order and two finite element approaches 

and validated them for symmetric laminated beams and different slenderness ratios.  

Machado et al.  [49] investigated dynamic stability of thin-walled composite beams, 

considering shear deformation, subjected to axial external force. They used Galerkin 

method in order to discretize the governing equation and the Bolotin’s method to 

determine the regions of dynamic instability of a simply supported beam. The numerical 

results showed that longitudinal vibration has large influence when the forcing frequency 

approaches the natural longitudinal frequency, obtaining parametric instability regions 

substantially wider. Machado and Cortinez  [50] showed that when the ratio of the smaller 

axis flexural stiffness to the major axis flexural stiffness is large, classic analysis of 

vibration may lead to inaccurate predictions because of the effects of initial 

displacements. 

Zhen and Wanji  [51] assessed and compared different displacement-based theories 

for vibration of special symmetric and anti-symmetric composite and sandwich beams 

including zigzag model and different higher order theories. They proposed the global-

local higher order theory to be suitable for symmetric and anti-symmetric laminates. 

Emam and Nayfeh  [52] proposed a closed-form solution for the postbuckling deformation 

as a function of the applied axial load, which is beyond the critical buckling load. They 

exactly solved the linear vibration problem around the first buckled configuration. El 

Fatmi and Ghazouani  [53] proposed a HSDT that can be viewed as an extension of Saint-

Venant’s theory. Based on a kinematics built from the exact form of Saint-Venant 
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displacement, their theory was rigorously derived for the case of symmetric cross-section 

made of orthotropic materials. 

 
 

Layerwise Theories 

In general, layerwise theories are used to represent local effects more accurately, 

such as interlaminar stress distribution, delaminations, etc. These theories are typically 

employed for cases involving anisotropic materials in which transverse shear effects 

cannot be ignored. Singh and Gupta  [54] presented formulations for the rotor dynamic 

analysis of a composite rotor by using conventional equivalent modulus beam theory 

(EMBT) and a layerwise beam theory. They used Rayleigh-Ritz displacements for 

deriving the solution. The results indicated that the difference between the two theories 

was not large, but for unsymmetric stacking sequences with bending stretching couplings 

present the EMBT may result in inaccurate predictions of rotordynamic behavior. Lee 

 [55] used a layerwise theory for free vibration analysis of a laminated beam with 

delaminations.  

 
 

Other Theories 

Pai and Nayfeh  [56] proposed nonlinear equations describing the extensional-

flexural-flexural-torsional vibrations of slewing or rotating metallic and composite 

beams. Three consecutive Euler angles were used to relate the deformed and undeformed 

states. The nonlinear equations of motion were used to investigate the response of an 

inextensional, symmetric angle-ply beam to a harmonic base-excitation along the 

flapwise direction  [57] and forced nonlinear vibration of a symmetrically laminated beam 
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 [58]. Kapuria et al.  [59] used zigzag theory to satisfy continuity of transverse shear stress 

through the laminate to assess the dynamic and buckling response of laminated beams. 

Kovacs  [60] proposed an iterative laminate model that can accurately determine the 

dynamic stress distribution in soft and hard cored sandwich arches.  

Lee  [61] applied pseudospectral method to the free vibration analysis of circularly 

curved multi-span Timoshenko beams and computed natural frequencies in good 

agreement with the literature. Sapountzakis and Dourakopoulos [62, 63] developed a 

boundary element method (BEM) for the general flexural-torsional vibration problem of 

Timoshenko beams of arbitrarily shaped composite cross-section taking into account the 

effects of warping stiffness, warping and rotary inertia and shear deformation. Six 

boundary value problems were solved using the Analog Equation Method, a BEM-based 

method. 

 
 

Methods for Solving Equations of Motion 

Differential Transform Method 

The differential transform method (DTM) is a semi-analytic transformation 

technique based on the Taylor series expansion and is a useful tool to obtain analytical 

solutions of the differential equations. In this method, certain transformation rules are 

applied and the governing differential equations and the boundary conditions of the 

system are transformed into a set of algebraic equations in terms of the differential 

transforms of the original functions and the solution of these algebraic equations gives the 

desired solution of the problem. The basic definitions and the application procedure of 

this method can be introduced as follows: 
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Consider a function f(x) which is analytic in a domain D and let x = x0 represent 

any point in D. The function f(x) is then represented by a power series whose center is 

located at x0. The differential transform of the function f(x) is given by  
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where f(x) is the original function and F[k] is the transformed function. 
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In actual applications, the function f(x) is expressed by a finite series and Eq. (11) 

can be written as follows: 
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depends on the convergence rate of the natural frequencies. By applying this transform to 

equations of motion, one can get solution to different problems and study the vibration of 

laminated beams. Ozgumus and Kaya  [64] introduced the DTM to study the vibration 

characteristics of a rotating tapered cantilever EB beam with linearly varying rectangular 

cross-section of area proportional to xn . In other researches they studied the out-of-plane 
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free vibration analysis of a double tapered EB beam, mounted on the periphery of a 

rotating rigid hub  [65] and performed free vibration analysis of a rotating, double tapered 

Timoshenko beam featuring coupling between flapwise bending and torsional vibrations 

using DTM  [66]. Kaya and Ozgumus [67, 68] analyzed the free vibration response of an 

axially loaded closed-section composite Timoshenko beam which featured material 

coupling between flapwise bending and torsional vibrations using DTM.  

Other people who used DTM were Catal  [69] who solved differential equations of 

motion for free vibration of axially loaded and supported on elastic soil beam and 

Arikoglu and Ozkol  [70] who made vibration analysis of composite sandwich beams with 

viscoelastic core. 

 
 

Dynamic Stiffness Matrix Method  

Abramovich et al.  [71] proposed the exact element method to find vibration 

frequencies of multi-span laminated beams, including the effect of rotary inertia and shear 

deformation. They derived the dynamic stiffness matrix to solve for any set of boundary 

conditions including elastic connections, number and length of spans, as in the classical 

direct stiffness method for framed structures. They validated their model for symmetric 

cross-ply laminates. Banerjee and Williams [72, 73] used dynamic stiffness matrix in 

conjunction with the Wittrick-Williams algorithm to compute the natural frequencies and 

mode shapes of composite beams with substantial coupling between bending and 

torsional displacements.  Banerjee  [74] studied free vibration analysis of axially loaded 

composite Timoshenko beams by using the dynamic stiffness matrix method. Banerjee 

and Su  [75] developed the dynamic stiffness matrix of a thin-walled spinning composite 
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beam and investigated its free vibration characteristics based on CBT. Tseng et al. and 

Huang et al. [76, 77] developed an analytical solution for the free vibration of composite 

laminated beams of variable curvature using Timoshenko-type curved beam theory and 

incorporating the dynamic stiffness method.  

Tseng et al.  [78] combined the dynamic stiffness method with the Laplace 

transform to obtain accurate transient responses of an arch with variable curvature. They 

considered the effects of shear deformation, rotary inertia, and damping. Huang et al.  [79] 

developed dynamic stiffness matrix for noncircular curved beams with variable cross-

section to derive an exact solution of the out-of-plane free vibration. Jun et al.  [80] used 

dynamic stiffness approach to numerically investigate vibration of laminated composite 

beams with arbitrary ply orientation. They accounted for the influences of Poisson effect, 

shear deformation and rotary inertia. They included the effect of axial load in another 

research  [81]. Moon-Young et al.  [82] proposed the exact dynamic and static stiffness 

matrices of shear deformable non-symmetric thin-walled beam-columns. They found the 

total potential energy in the general form by introducing the displacement field based on 

semitangential rotations and deriving transformation equations between displacement and 

force parameters defined at the arbitrary axis and the centroid-shear center axis, 

respectively. 

 
 

State Space Approach (Transfer Matrix Method) 

The state space approach (transfer matrix method) in vibration analysis of beams 

was first used by Khdeir and Reddy  [83]. They studied free vibration of cross-ply 

laminated beams with arbitrary boundary conditions and presented the fundamental 
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natural frequencies based on the various beam theories. Yildrim et al.  [84] studied the in-

plane free vibration problem of symmetric cross-ply laminated beams based on the 

transfer matrix method. They compared the results of Timoshenko and EB theories for 

first six non-dimensional frequencies with each other for length-to-thickness ratios.  They 

included out of plane vibration in another research  [85]. Yildrim  [86] studied axial and 

shear deformation effects on the in-plane natural frequencies of symmetric cross-ply 

laminated circular arches and obtained the exact in-plane element stiffness matrix based 

on the transfer matrix method. In another research the effect of the longitudinal to 

transverse moduli ratio on the first three in-plane natural frequencies for different 

length/thickness ratios and boundary conditions of symmetric cross-ply beams was 

investigated  [87]. Yildrim and Kiral  [88] studied the effect of shear deformation and 

rotary inertia on out-of-plane free vibration problem of symmetric cross-ply laminated 

beams by the transfer matrix method. Yildrim  [89] also did a numerical study to 

investigate the common effects of the rotary inertia and shear deformation on the first six 

out-of-plane free vibration frequencies of symmetric cross-ply laminated bars with the 

help of transfer matrix method.  

 
 

Finite Element Methods 

Finite element methods (FEM) are used in solving equations of motion mainly for 

incorporation of nonlinear effects and complicated geometries. Kosmatka and Friedmann 

 [90] determined the free vibration characteristics of composite turbo-propellers using a 

number of straight beam-type finite elements. The FEM was obtained from Hamilton's 
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principle, with allowances for generally anisotropic material behavior, arbitrary cross-

sectional properties, large pretwist angles, out-of-plane cross-section warping, and 

geometrically nonlinear behavior, based on moderate-deflection theory. Singh et al.  [91] 

investigated large amplitude free vibrations of unsymmetrically laminated beams using 

von Karman large deflection theory. They studied the problem by reducing the dynamic 

nonlinear finite element equations to two second order ordinary nonlinear differential 

equations using converged normalized spatial deformations in the positive and negative 

deflection half-cycles. 

Hodges et al.  [92] compared different methods for determination of cross sectional 

stiffness parameters and solved the equations of motion for eigenvalues using numerical 

integration and mixed FEM. Both of these methods were validated for symmetric beams.  

Lee et al.  [93] proposed a FEM for stress and vibration analysis of laminated composite 

beams based on a multilayered theory. Their theory accounted for the continuity of 

interlaminar shear stress. Chandrashekhara and Bangera  [94] developed a FEM based on 

HSDT to study the free vibration characteristics of laminated composite beams. They 

incorporated Poisson effect and rotary inertia and verified the numerical results for 

symmetrically laminated beams. 

 Chen et al.  [95] derived finite element stiffness and consistent mass matrices for 

helically wound, symmetrical composite tubes. They used shell theory and lamination 

theory to formulate element stiffness matrices and reduced it to symmetrically laminated 

composite beam. Nabi and Ganesan  [96] developed a general finite element based on a 

FSDT to study the free vibration characteristics of laminated composite beams. Their 

formulation accounted for bi-axial bending as well as torsion. Jeon et al.  [97] investigated 
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static and dynamic behavior of composite box beams using a large deflection beam 

theory. They obtained finite element equations of motion for beams undergoing arbitrary 

large displacements and rotations, but small strains, from Hamilton’s principle. Gadelrab 

 [98] used the FEM to obtain the effect of the delamination length and its starting point 

from the end condition on the natural frequencies of composite laminated beams. Rao and 

Ganesan  [99] investigated the harmonic response of tapered composite beams using 

FEM. They incorporated effects of in-plane and rotary inertia as well as the Poisson effect 

and considered uniaxial bending only. Winfield et al.  [100] used FEM to study the free 

vibration of a long thick laminated conical tube with a beam-type model. Zeng  [101] 

developed the beam element of the composite element method. He presented the detailed 

numerical verifications for the beam element of Composite Element Method which 

involved the h-version and the c-version. Patel et al.  [102] studied nonlinear free flexural 

vibrations and post-buckling of laminated orthotropic thick beams resting on a class of 

two parameter elastic foundation using a three noded shear flexible beam element. 

Geometric nonlinearity was considered using von Karman strain displacement relations. 

They solved nonlinear governing equations for orthotropic and cross-ply laminated beams 

with simply supported boundary conditions by employing the direct iteration technique. 

Bassiouni et al.  [103] used FEM in order to obtain the natural frequencies and 

mode shapes of laminated composite beams. They included shear deformation but not 

interfacial slip or delamination and compared numerical results with the experimental 

ones. The theoretical model gave good results compared with the experimental ones. Shi 

and Lam  [104] presented a finite element formulation for the free vibration analysis of 

composite beams based on the third order beam theory. They studied the influence of the 
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mass components resulting from higher order displacements on the frequencies of 

flexural vibration. Zapfe and Lesieutre  [105] proposed a discrete layer beam finite 

element for the dynamic analysis of composite sandwich beams with integral damping 

layers. Raveendranath et al.  [106] proposed a 2-noded curved composite beam element 

with three DOF per node for the analysis of laminated beam structures. The formulation 

accounted for flexural, extensional and transverse shear loadings in the plane of the 

curved beam based on FSDT. Their test problems prove the versatility of the element for 

the analysis of curved and straight laminated beams. 

Yanchu  [107] decomposed the laminate as multiple basic layers and assembled 

mass and stiffness matrices of these basic layers together to generate those matrices for 

the beam element. His method allowed the direct consideration of complex modulus of 

any layer so that it offered much more accurate damping analysis for such structures. 

Kapania and Goyal  [108] developed three models to predict randomness in the free 

vibration response of unsymmetrically laminated beams: exact Monte Carlo simulation, 

sensitivity-based Monte Carlo simulation, and probabilistic FEA. Results showed that 

variations of 5 deg in ply angles have little effect on the lower mode natural frequencies 

of unsymmetrically and symmetrically laminated beams. Lee and Kim [109, 110] 

developed a general analytical model applicable to the dynamic behavior of a thin-walled 

channel section composite beams based on the CBT that accounts for the coupling of 

flexural and torsional modes for arbitrary laminate stacking sequence configuration. 

Piovan and Cortnez  [111] carried out parametric studies of the natural frequencies of 

tailored composite thin-walled curved box-beams by means of FEM. Their structural 

model took into account the shear flexibility due to warping as well as due to bending.  
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Kim et al.  [112] proposed a formulation for free vibration and spatial stability of 

non-symmetric thin-walled curved beams considering variable curvature effects and the 

second-order terms of finite semitangential rotations. They developed a thin-walled 

curved beam element using the third-order Hermitian polynomials and compared the 

numerical solutions with the results analyzed by ABAQUS shell elements. Ostachowicz 

and Zak  [113] used HSDT based finite elements to study damped vibration of a laminated 

cantilever beam with a single closing delamination. Mitra et al.  [114] developed a new 

composite thin wall beam element of arbitrary cross-section with open or closed contour. 

Their formulation incorporated the effect of elastic coupling, restrained warping, 

transverse shear deformation associated with thin walled composite structures. A FSDT 

approach was considered for static and free vibration analyses. Murthy et al.  [115] 

derived a refined 2-node, 4 DOF/node beam element is based on higher order shear 

deformation theory for axial–flexural-shear coupled deformation in asymmetrically 

stacked laminated composite beams. The numerical results were validated for static and 

free vibration analysis of cross-ply beams. 

Sarikanat et al.  [116] determined the effects of axial load on the natural frequency 

in simply supported thick composite beams using FEM. The material properties of the 

elements were calculated with two different average value methods (arithmetic and 

weighted average). They observed that the results obtained by the arithmetic 

average method were quite close to the analytic results. Saravanos et al.  [117] developed 

a 3D shear beam finite element for the damping analysis of tubular laminated composite 

beams. Sapountzakis and Mokos  [118] developed a boundary element method to perform 

dynamic analysis of 3-D composite beam elements restrained at their edges by the most 
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general boundary conditions and subjected in arbitrarily distributed dynamic loading.  

Piovan and Cortinez developed a theoretical model for the generalized linear analysis of 

composite thin-walled straight  [119] and curved  [120] beams with open or closed cross-

sections incorporating full form of the shear deformability. They used the theoretical 

formulation together with a non-locking fourteen DOF finite element for the solutions to 

the general equations of thin-walled shear deformable composite beams. Ganesan and 

Zabihollah [121, 122] investigated the free undamped vibration response of tapered 

composite beams, using a higher-order finite element formulation. They determined 

stiffness coefficients of the tapered laminated beam based on the stress and strain 

transformations and classical laminate.  

Duan  [123] presented a finite element formulation for the nonlinear free vibration 

of thin-walled curved beams with non-symmetric open cross section. Jun et al.  [124] 

proposed a dynamic FEM for free vibration analysis of generally laminated composite 

beams on the basis of FSDT by incorporating influences of Poisson effect, couplings 

among extensional, bending and torsional deformations, in the formulation. Boukhalfa et 

al.  [125] employed a p-version, hierarchical finite element to investigate dynamic 

behavior of the rotating composite shaft on rigid bearings. They incorporated the 

transverse shear deformation, rotary inertia and gyroscopic effects, as well as the 

coupling effect. Kadioglu and Iyidogan  [126] investigated free vibration of laminated 

composite curved beams using mixed FEM. Vo and Lee  [127] developed a general 

analytical model based on SDBT to study the flexural–torsional coupled vibration and 

buckling of thin-walled open section symmetric laminated beams with arbitrary lay-ups 

using FEM. They studied effect of constant axial force using CBT  [128] and SDBT  [129]. 
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In another research they developed a displacement-based 1D FEM with seven DOFs per 

node based on CBT to present the interaction curves for vibration and buckling of thin-

walled composite box beams under constant axial loads and equal end moments  [130]. 

Kim and Wang  [131] carried out vibration analysis of composite beams by using FEM-

based formal asymptotic expansion method. They used 3D equilibrium equations in 

which cross-sectional coordinates were scaled by the characteristic length of the beam 

and discretized microscopic 2D and macroscopic 1D equations obtained via the 

asymptotic expansion by applying a conventional FEM.   

 

Experimental Investigation 

Cudney and Inman  [132] derived a method of estimating the distributed damping 

parameters of a beam based on frequency and damping ratios. Three different 

mathematical models were used to model the damping mechanism of a quasi-isotropic 

pultruded cantilevered beam. These three models were viscous damping, strain-rate 

damping, and both viscous and strain-rate damping. It was found by experimental modal 

analysis that the two-parameter damping model provides the best fit to measure modal 

data.  Chandra and Chopra  [133] presented a theoretical-cum-experimental study of the 

free vibration characteristics of thin-walled rotating box beams with bending-twist and 

extension-twist coupling using Galerkin method. The experimental frequencies and mode 

shapes correlated satisfactorily with the theoretical results. It was shown that bending-

shear coupling influences the flexural vibration frequencies of antisymmetric box beams 

significantly while Extension-shear coupling does not. Bassiouni et al.  [103] used a finite 

element model in order to obtain the natural frequencies and mode shapes of laminated 
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composite beams. They included shear deformation but not interfacial slip or 

delamination and compared numerical results with the experimental ones. The theoretical 

model gave good results compared with the experimental ones. Baba and Thoppul  [134] 

made a systematic experimental study to determine the effect of curvatures and debond 

on the flexural stiffness and strength of composite sandwich beam structures. Ooijevaar et 

al.  [135] used experiments to investigate vibration based damage identification method 

for a composite T-beam. 

 

Smart Beams 

Composite materials have the advantage of easily placing smart sensors and 

actuators inside the structure. Smart materials such as piezoelectric sensors and actuators, 

shape memory alloys, and electrorheological fluids are used in studies of beams mainly 

for control of vibration. Choi et al.  [136] studied the effect of electrorheological fluid on 

the vibration characteristics of a composite beam. They obtained the complex moduli of a 

hollow beam filled with an electrorheological fluid by analyzing the beam's motion in 

free oscillation. 

 
 

Piezoelectric Beams 

Kim and Jones  [137] analytically investigated a quasi-static control strategy using 

embedded piezoelectric actuators to alter the vibration response of a composite beam 

model. Nonlinear equations of motion of the composite beam were developed, which 

incorporated the influence of initial in-plane loads generated by the piezoelectric layers. 

Spearritt and Asokanthan  [138] proposed a theoretical and experimental development of a 
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laminated spatially distributed piezoelectric torsional vibration actuator for a clamped-

free cantilever beam. Their theoretical and experimental decay histories of the first 

torsion mode indicated a reduction in decay time for the controlled beam of greater than 

10 times that of the uncontrolled beam.  

Chandrashekhara and Varadarajan  [139] worked on adaptive shape control of 

beams with piezoelectric actuators. Takawa et al.  [140] studied flexural–torsion coupled 

vibration control of a composite cantilevered beam by using piezoceramic actuators in 

two different directions. Peng et al.  [141] developed a FEM based on third order laminate 

theory for the active position and vibration control of composite beams with distributed 

piezoelectric sensors and actuators. Shih  [142] studied the distributed vibration sensing 

and control of a piezoelectric laminated curved beam. Chattopadhyay et al.  [143] 

investigated vibration reduction in rotor blades using active composite box beam. They 

used a 3D model that approximated the elasticity solution so that the beam cross-sectional 

properties were not reduced to 1D parameters and both in-plane and out-of-plane 

warpings were included. 

Varadarajan et al.  [144] developed a FEM based on HSDT, accounting for 

piezoelectric effects to investigate performance of an LQG/LTR-based multi-input multi-

output robust vibration control system for a laminated composite beam. Takawa et al. 

 [145] investigated the fuzzy control of vibration for a hybrid smart CFRP cantilevered 

beam actuated by piezoceramic and electro-rheological fluids actuators. Abramovich and 

Livshits  [146] developed a balanced model describing the behavior of piezolaminated 

composite beams based on FSDT. Raja et al.  [147] used quasi-static equations of 

piezoelectricity to derive a FEM capable of modeling two different kinds of 
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piezoelastically induced actuation in a sandwich beam. They developed a control scheme 

based on the linear quadratic regulator/independent modal space control method and 

estimated the active stiffness and the active damping introduced by shear and extension-

bending actuators. The shear actuator was more efficient in controlling the vibration than 

the extension-bending actuator for the same control effort. 

Waisman and Abramovich  [148] investigated the stiffening effects of a simply 

supported and clamped–free symmetric piezolaminated composite type beam. Song et al. 

 [149] studied the active vibration control of a cantilever composite beam using 

piezoceramic patches using both theoretical and FEM analysis. Takawa and Fukuda  [150] 

and Susumu and Takeshi  [151] used a fuzzy model to investigate vibration control for a 

smart CFRP beam actuated by piezoceramic and electrorheological fluid actuators. 

Mitra et al.  [152] made theoretical and experimental investigation of vibration 

control of composite box beams using distributed, surface mounted piezoelectric 

actuators. The finite element modeling of their box beam was done by formulating a 

FSDT active composite thin walled beam element. Chandiramani et al.  [153] worked on 

optimal vibration control of a rotating composite beam with distributed piezoelectric 

sensing and actuation. They modeled a rotating composite blade, as a box-beam with 

transverse shear flexibility, shear-tractionless bounding faces and restrained warping, and 

subjected to a time dependent pressure pulse. Librescu and Na  [154] studied the vibration 

control of adaptive doubly-tapered cantilevered composite beams, simulating an aircraft 

wing, exposed to time-dependent external pulses through the converse piezoelectric 

effect. 
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Gu and Song  [155] used piezoceramic patch sensors and actuators for active 

vibration suppression of a composite I-beam using fuzzy positive position control. Lin 

and Nien  [156] investigated modeling and vibration control of a smart beam using 

piezoelectric damping-modal actuators/sensors. Sethi et al.  [157] and Sethi and Song  

 [158] studied and tested vibration control of a flexible composite I-beam using 

piezoceramic sensors and actuators. Edery-Azulay and Abramovich  [159] studied the 

effects of piezoceramic materials on the augmented damping of vibrating piezo-

composite beams. Ashida et al.  [160] investigated control of thermally induced vibration 

in a composite beam with damping effect. Their beam consisted of a central thermoelastic 

structural layer and two outer piezothermoelastic layers.  

Choi et al.  [161] studied bending vibration control of the pre-twisted rotating 

composite thin-walled beam. The formulation was based on single cell composite beam 

including a warping function, centrifugal force, Coriolis acceleration, pre-twist angle and 

piezoelectric effect. Fridman and Abramovich  [162] used FSDT to compute natural 

frequencies and their associated mode shapes, as well as, buckling loads for beams with 

and without piezoelectric layers influence, having various boundary conditions and lay-

ups.  

Ji et al.  [163] proposed an improved semi-active control synchronized switch 

damping on voltage (SSDV) method and applied to the vibration control of a composite 

beam. Also Ji et al.  [164] proposed an adaptive semi-active SSDV method based on the 

least mean squares (LMS) algorithm and applied to the vibration control of a composite 

beam. Susanto  [165] presented an analytical model of piezoelectric laminated slightly 
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curved beams, which included the computation of natural frequencies, mode shapes and 

transfer function formulation using the distributed transfer function method (DTFM). 

Vadiraja and Sahasrabudhe  [166] used HSDT for Structural modeling of rotating 

pre-twisted thin-walled composite beams with embedded macro fiber composite actuators 

and sensors. It was observed that gyroscopic coupling between lagging-extension motions 

had significant effect and cannot be neglected in the analysis. Foda et al.  [167] developed 

an analytical approach to suppress the steady state transverse vibration of a symmetric 

cross-ply laminated composite beam that is excited by an external harmonic force by 

piezoelectric patches. They used dynamic Green’s functions to solve governing equations 

and proposed a scheme for determining the values of the driving voltages, the dimensions 

of the PZT patches and their locations along the beam. Chandiramani  [168] studied the 

optimal control of a thin-walled rotating beam using HSDT. The pretwisted, doubly 

tapered beam was comprised of orthotropic host with surface-embedded transversely 

isotropic piezoelectric sensor-actuator pairs. Abramovich  [169] showed that in-plane 

cross sectional deformations due to small lateral vibrations, when coupled with the 

internal stresses due to the constant electric voltage, results in a significant influence on 

the free lateral vibrations. 

 

Beams with Shape Memory Alloys 

Lau et al.  [170] investigated the change of natural frequencies of a clamped–

clamped composite beam with embedded shape memory alloy wires. Tsai and Chen  [171] 

investigated numerical parametric studies of the natural frequencies and static buckling 

loads of the composite beam with activated SMA fibers. 
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Aoki and Shimamoto  [172] investigated the active damping effect of the smart 

matrix composite made of epoxy resin with embedded fibers of TiNi to examine if it is 

possible to apply the composite as a damping material. Zhang and Zhao  [173] studied the 

kinematic assumptions influence on deflection and vibration characteristics of a 

composite beam with arbitrarily embedded shape memory alloy. They compared natural 

frequencies of the composite beam with the nonlinear governing equation, which were 

obtained by directly linearizing the equations and locally linearizing the equations around 

each equilibrium. Majewska et al.  [174] investigated active vibration control of a cracked 

composite beam using magnetic shape memory alloy actuators. Lee et al.  [175] used 

transfer matrix method to study lateral vibration of a composite stepped beam consisted 

of SMA helical spring based on CBT. A discussion on this paper was made by Sinha 

 [176]. Dos Reis et al.  [177] studied vibration attenuation in an epoxy smart composite 

beam with embedded NiTi shape memory wires.   

 

Complicating Effects 

Dynamic Loading and Excitation 

Gong and Lam  [178] studied transient response of layered composite beams 

subjected to underwater shock. Ganesan and Kowda  [179] investigated free vibration of 

composite beam-columns with stochastic material and geometric properties subjected to 

random axial loads. They used the perturbation method in the context of stochastic 

analysis.  

Jun and Xianding  [180] studied the flexure–torsion coupled random response of 

composite beams with solid or thin-walled closed sections subjected to various types of 
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concentrated and distributed random excitations. They assumed random excitations to be 

stationary, ergodic and Gaussian and obtained analytical expressions for the displacement 

response of the composite beams by using normal mode superposition method combined 

with frequency response function method. 

Li et al.  [181] investigated the stochastic bending–torsion coupled response of 

axially loaded slender composite beams with solid or thin-walled closed cross sections by 

using normal mode method in conjunction with receptance method. They used CBT with 

the effects of bending–torsion coupling and axial force included. Kiral  [182] used a 3D 

FEM based on the classical laminated plate theory together with the Newmark integration 

method in order to obtain the dynamic response of the beam. He employed Rayleigh 

damping in the dynamic analyses and presented the impulse, step and moving load 

responses of the composite beam are for different damping ratios. Ibrahim et al.  [183] 

investigated the periodic response of cross-ply composite curved beams subjected to 

harmonic excitation with frequency in the neighborhood of symmetric and antisymmetric 

linear free vibration modes. Their analysis was carried out using HSDT based FEM. 

 

Rotating Beams 

Rotating beams are mainly used in two applications. First, shafts that have tubular 

cross section and spin about the longitudinal axis and second, blades that have box cross 

section and rotate along normal axis. The first is mainly used in the automotive industry 

and power transmission devices while the second have mainly aerospace applications. 
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Shafts 

Singh et al.  [184] reviewed the developments in dynamics of composite material 

shafts in 1997. Singh and Gupta  [185] investigated on natural frequencies and damping 

ratios in flexural modes of composite cylindrical tubes. They used beam and shell 

formulation and concluded that their beam theory can not account for bending-stretching 

and shear-normal couplings. Also for extreme values of length and thickness to radius 

ratio, the beam formulation was inaccurate. Kim and Bert  [186] proposed a theoretical 

analysis for determining the critical speeds of a rotating circular cylindrical hollow shaft 

by means of the thin-and thick-shell theories. They used the dynamic analog of the 

Sanders best first approximation shell theory. They included the combined effects of 

torsion and rotational effects containing the centrifugal and Coriolis forces. Song and 

Librescu  [187] investigated on anisotropy and structural coupling on vibration and 

instability of spinning thin-walled beams. They included transverse shear and the primary 

and secondary warping effects. Kim et al.  [188] Investigated on free vibration of a 

rotating tapered composite Timoshenko shaft using Galerkin method. It was found that by 

tapering, bending natural frequencies and stiffness can be significantly increased over 

those of uniform shafts having the same volume and made of the same material. 

Song et al.  [189] investigated on vibration and stability of anisotropic pretwisted 

beams rotating at constant angular speed about the longitudinal body-axis. They used 

refined theory of thin-walled anisotropic composite beams featuring bending-bending 

elastic coupling. In a subsequent publication  [190], they addressed problems related with 

the implications of conservative and gyroscopic forces on vibration and the stability of a 

circular cylindrical shaft modeled as a thin-walled spinning composite beam. Chang et al. 
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 [191] considered composite shaft containing discrete isotropic rigid disks and supported 

by bearings modeled as springs and viscous dampers. They extended Hamilton’s 

principle to derive the governing equations for finding critical speeds of composite shaft 

systems and incorporated the transverse shear deformation, rotary inertia and gyroscopic 

effects, as well as the coupling effect due to the lamination of composite layers. Chang et 

al.  [192] performed vibration analysis of rotating composite shafts containing randomly 

oriented reinforcements. Gubran and Gupta  [193] analyzed the natural frequencies of 

composite tubular shafts using equivalent modulus beam theory with shear deformation, 

rotary inertia and gyroscopic effects included. Their approach took into account effects of 

stacking sequence and different coupling mechanisms. Banerjee and Su  [75] developed 

the dynamic stiffness matrix of a spinning thin-walled composite beam and investigated 

its free vibration characteristics based on CBT. Na et al.  [194] studied vibration and 

stability of a circular cylindrical shaft modeled as a tapered thin-walled composite beam, 

spinning with constant speed and subjected to an axial compressive force. Ghoneim and 

Lawrie  [195] developed a mathematical model, based on Timoshenko beam assumption, 

for a rotating composite cylindrical shaft with cylindrical constrained layer damping 

partially covering the length span of the shaft. Sino et al.  [196] introduced a homogenized 

FEM which takes into account internal damping of the beam and evaluated natural 

frequencies and instability thresholds of an internally damped rotating composite shaft. 

Qatu and Iqbal  [10] used CBT to solve the vibration of a cross-ply laminated composite 

driveshaft with an intermediate joint. Alwan et al.  [197] studied dynamic behavior of 

composite shafts with particular interest on estimation of damping. They used ANSYS 

for modeling of the shaft and analyzed the effect of material properties and stacking 
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sequence on eigenfrequencies of composite tube-shafts. Different methodologies such as 

logarithmic decay curve, half-power method, and hysteresis loop method using force 

sensors were used for determining the damping of the composite shafts. 

 

Blades 

Kosmatka and Friedmann  [90] determined the free vibration characteristics of 

composite turbopropellers using a number of straight beam-type finite elements. The 

FEM was obtained from Hamilton's principle, with allowances for generally anisotropic 

material behavior, arbitrary cross-sectional properties, large pretwist angles, out-of-plane 

cross-section warping, and geometrically nonlinear behavior, based on moderate-

deflection theory. Chandra and Chopra  [133] presented a theoretical-experimental study 

of the free vibration characteristics of thin-walled composite box beams with bending-

twist and extension-twist coupling under rotating conditions using Galerkin method. The 

experimental frequencies and mode shapes correlated satisfactorily with the theoretical 

results. It was shown also that bending-shear coupling influences the flexural vibration 

frequencies of antisymmetric box beams significantly while extension-shear does not. 

Ozgumus and Kaya [65, 66] performed free vibration analysis of a rotating, double 

tapered beam featuring coupling between flapwise bending and torsional vibrations using 

DTM. Kuang and Hsu  [198] investigated on effect of fiber angle, internal and external 

damping, inclined angle and the rotation speed on the natural frequencies of orthotropic 

composite pre-twisted blades by employing the differential quadrature method (DQM). 

Choi et al.  [161] studied bending vibration control of the pre-twisted rotating composite 

thin-walled beam. The formulation was based on single cell composite beam including a 
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warping function, centrifugal force, Coriolis acceleration, pre-twist angle and 

piezoelectric effect. They used CBT along Kelvin–Voigt internal and linear external 

damping coefficients. Huang et al.  [199] proposed a method based on the power series 

solution to solve the natural frequency of very slender rotating beam at high angular 

velocity. They investigated the natural frequency of the flapwise bending vibration, and 

coupled lagwise bending and axial vibration for the rotating beam.  

 

Damaged Beams 

Study on damaged beams is focused on two main areas. One aspect of research is 

to investigate the effect of damages on beams natural frequencies in order to avoid those 

ranges. Another aspect is to use vibration for finding damages present in the structure that 

is called vibration monitoring. Vibration monitoring is one the main methods for damage 

identification and health monitoring of composite structures. 

 

Damage Effect on Natural Frequencies 

Della and Shu  [200] provided a relevant survey on the various analytical models 

and numerical analyses for the free vibration of delaminated composites in 2007. 

Krawczuk and Ostachowicz  [201] investigated modeling and vibration analysis of a 

cantilever composite beam with a transverse open crack. Gadelrab  [98] used FEM to 

obtain the effect of the delamination length and its starting point from the end condition 

on the natural frequencies of composite laminated beams. Lee  [54] used a layerwise 

theory for free vibration analysis of a laminated beam with delaminations. Lee et al.  [202] 

made free vibration analysis of axially compressed laminated composite beam-columns 
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with multiple delaminations. Birman and Byrd  [203] investigated the effect of matrix 

cracks in longitudinal and transverse layers of cross-ply ceramic matrix composite beams 

on their mechanical properties and vibration frequencies. Kisa  [204] used FEM and the 

component mode synthesis methods to perform free vibration analysis of a cantilever 

composite beam with multiple cracks. Ostachowicz and Zak  [113] used HSDT based 

FEM to study damped vibration of a laminated cantilever beam with a single closing 

delamination. Perel  [205] performed FSDT based FEM for vibration of delaminated 

composite beam with an account of contact of the delamination crack faces. Zak  [206] 

studied damped non-linear vibration of a delaminated composite beam using HSDT based 

FEM. Della and Shu  [207] presented an analytical solution for the free vibrations of 

beams with two overlapping delaminations in prebuckled states. They analyzed the 

delaminated beam as seven interconnected EB beams and observed a monotonic relation 

between the natural frequency and the compressive load. Baba and Gibson  [208] used a 

2D FEA to predict the natural frequencies and corresponding vibration modes of a free-

free sandwich beam with delamination of various sizes and locations. Baba and Thoppul 

 [134] made a systematic experimental study to determine the effect of curvatures and 

debond on the flexural stiffness and strength of composite sandwich beam structures. 

Free vibration analysis of delaminated composite beams was investigated by Kiral  [209]. 

Yazdi and Rezaeepazhand  [210] studied the applicability of similitude theory in 

establishing necessary similarity conditions for designing scaled down models for 

predicting the vibration behavior of delaminated composite beam-plates.  
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Vibration Monitoring 

Zou et al.  [211] conducted a review in 1998 on vibration based model independent 

damage identification and health monitoring of composite structures. Ratcliffe and 

Bagaria  [212] presented an experimental nondestructive vibration-based technique for 

locating a delamination in a composite beam. Sahin and Shenoi  [213] investigated the 

effectiveness of the combination of global (changes in natural frequencies) and local 

(curvature mode shapes) vibration-based analysis data as input for artificial neural 

networks for location and severity prediction of damage in composite beams. 

Ooijevaar et al.  [135] used experiments to investigate vibration based damage 

identification method for a 2.5-dimensional composite T-beam. Nichols and Murphy 

 [214] worked on detecting delamination in composite beams based on a polyspectral 

analysis of the structure’s vibrational response. They presented a low-dimensional model 

of the structure that captures the delamination-induced nonlinearity and showed how it 

influences the beam’s dynamic response.  

 

Added Mass Effect 

Chandrashekhara and Bangera  [215] investigated vibration of symmetrically 

laminated clamped-free beam with a mass at the free end. They derived equations of 

motion for the laminated beam accounting for the Poisson effect, rotary inertia and 

transverse shear deformation. White and Heppler  [216] derived the equations of motion 

and boundary conditions for a free-free Timoshenko beam with rigid bodies attached at 

the endpoints and developed the frequency equation including the effects of the 

body mass, first moment of mass, and moment of inertia. Dadfarnia et al.  [217] used a 
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translational cantilevered EB beam with tip mass at its free end to study the effect of 

several damping mechanisms on the stabilization of the beam displacement. A Lyapunov-

based controller utilizing a partial differential equation model of the translational beam 

was developed to exponentially stabilize the beam displacement while the beam support 

is regulated to a desired set-point position. 

 

Damped and Viscoelastic Beams 

Bishop and Kinra  [218] studied thermoelastic damping of a laminated beam in 

flexure and extension. Zapfe and Lesieutre  [219] proposed a smeared laminate model for 

the dynamic analysis of laminated beams to predict the modal frequencies and damping 

of simply supported beams with integral viscoelastic layers. Their model included the 

effects of transverse shear and rotary inertia. In another research they proposed a discrete 

layer beam FEM for the dynamic analysis of composite sandwich beams with integral 

damping layers  [105]. Yim  [220] compared three different methods for prediction of 

damping of a symmetric balanced laminated composite beam. Kovacs  [221] proposed an 

iterative model to predict the modal frequencies and damping of simply-supported 

sandwich circular arch. He compared solutions for a three-layer circular arch with a three-

layer approximate model. 

Vengallatore  [222] studied thermoelastic damping in symmetric, three-layered, 

laminated, micromechanical EB beams using an analytical framework developed by 

Bishop and Kinra. Numayr and Qablan  [223] considered three cases to analyze free 

vibrations of wide sandwich beams. They modeled viscoelastic core by elastic 

translational and rotational springs and used the finite difference method to solve the 
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problem. They showed that if the bending–torsion coupling was pronounced, the 

inclusion of warping affects the natural frequency considerably. 

Saravanos et al.  [117] developed 3D shear beam finite element for the damping 

analysis of tubular laminated composite beams. Edery-Azulay and Abramovich  [159] 

studied the effects of piezoceramic materials on the augmented damping of vibrating 

piezo-composite beams. Prabhakar and Vengallatore  [224] presented an exact theory to 

compute the frequency dependence of thermoelastic damping in asymmetric, bilayered, 

micromechanical EB beam resonators. Arvin et al.  [225] made a numerical study of free 

and forced vibration of composite sandwich beam with viscoelastic core. They achieved 

higher order theory for sandwich beam with composite faces and viscoelastic core by 

considering independent transverse displacements on two faces and linear variations 

through the depth of the beam core. Arikoglu and Ozkol  [70] made Vibration analysis of 

composite sandwich beams with viscoelastic core by using DTM. Alwan et al.  [197] 

studied different methodologies such as logarithmic decay curve, half-power method, and 

hysteresis loop method using force sensors for determining damping of composite shafts. 

 

Beams on Elastic Support 

Patel et al.  [102] studied nonlinear free flexural vibrations and post-buckling of 

laminated orthotropic beams resting on a class of two parameter elastic foundation using 

a three-noded shear flexible beam element. Their nonlinear formulation includes the 

effects of transverse shear deformation, in-plane and rotary inertia terms. Koutsawa and 

Daya  [226] performed static and free vibration analysis of laminated fiberglass beam on 

viscoelastic supports. Jafari-Talookolaei and Ahmadian  [227] investigated free vibration 
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analysis of a cross-ply laminated composite beam on two parameter elastic foundation 

(Pasternak) foundation. They computed natural frequencies of beam on Pasternak 

foundation using FEM on the basis of Timoshenko beam theory. Malekzadeh and 

Vosoughi  [228] did differential quadrature (DQ) large amplitude free vibration analysis 

of laminated composite thin beams on nonlinear elastic foundation. They considered 

beam edges to be elastically restrained against rotation and in-plane immovable. They 

developed a finite element program to verify the results of the presented DQ approach. 

Baghani et al.  [229] presented analytical expressions for large amplitude free vibration 

and post-buckling analysis of unsymmetrically laminated composite beams on elastic 

foundation. They solved nonlinear governing equation by employing the variational 

iteration method and reached accurate solutions for a wide range of vibration amplitudes. 

 

Other Complexities 

Vibration analysis of stepped laminated composite Timoshenko beams was 

investigated by Farghaly and Gadelrab  [230] and Dong et al.  [231]. They determined 

flexural rigidity and transverse shearing rigidity of a laminated beam based on FSDT. 

Kütüg  [232] investigated the frequency and forms of natural vibrations of a hinged beam-

strip fabricated from a composite material with small-scale curved structures using the 

plate theory in the framework of the Timoshenko hypothesis. 

Nachum and Altus  [233] studied natural frequencies and mode shapes of non-

homogeneous (deterministic and stochastic) rods and beams based on the functional 

perturbation method. 
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Concluding Remarks 

Research on the analyses of composite beams has been increasing rapidly in the 

last two decades. Researchers in the field of composite beam analyses avoided use of 3D 

theory of elasticity and developed and used thick beam theories. More than 230 research 

articles have been cited on the subject during this time with more than two third in the 

last 10 years. Many researchers use the finite element method for their analyses. Much of 

the research is paying attention to evolving technologies on piezoelectric materials and 

applications like blades and shafts. Other research focused on vibration control through 

damping and structural health monitoring through vibration testing.  
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CHAPTER III 

  STATIC AND VIBRATION ANALYSIS OF GENERALLY 

LAMINATED STRAIGHT THICK BEAMS 

 
 

Introduction 
The use of laminated composite beams, plates and shells in many engineering 

applications including aerospace, marine, medical equipment, automotive as well as 

others has been expanding rapidly in the past decades.  Structures composed of composite 

materials offer lower weight and higher strength and stiffness than those composed of 

most metallic materials. However, their main advantage is the possibility to tailor design 

for specific application. Composite beams, plates and/or shell components now constitute 

a large percentage of recent aerospace, submarine and other structures.  

Besides, composites have their own challenges in predicting dynamic behavior, 

failure, or fatigue. The designers face more complicated problems in designing such 

structures and they should broaden their knowledge to efficiently employ these benefits 

while considering all phenomena related to composites. One of the important problems in 

composite structures design is the dynamic behavior and natural frequency calculation for 

composite beams. Composite beams are lightweight load carrying structures in many 

diverse applications including construction industries.  
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This chapter is concerned with the development of a general approach for the 

static and vibration analysis of generally laminated composite beams, which can be useful 

for design engineers. Three dimensional finite element analyses are based on the 3D 

elasticity theory. Thus, they are the most accurate analytical procedure to obtain natural 

frequencies. However, 3D FEM is a very expensive procedure demanding both expensive 

machines and longer computer times if used for large scale structures. In addition, these 

structures have two dimensions smaller than the third. For these structures, beam models 

are very efficient provided they are built on accurate models and are verified against 3D 

analyses as is done in this chapter. It should be mentioned here that the treatment 

presented in this chapter considers beams vibrating (or deforming) in one plane. 

Two classes of theories are developed for laminated beams. In the first class of 

theories, thin beams are studied where effects of shear deformation and rotary inertia are 

neglected. This class of theories will be referred to as thin beam theories or classical 

beam theories (CBT). This is typically accurate for thin beams and fundamental 

frequencies and is less accurate for thicker beams and higher frequencies. In the second 

class of theories, shear deformation and rotary inertia effects are considered. This class of 

theories will be referred to as thick beam theory or shear deformation beam theory 

(SDBT).  

The well-known formula for finding the natural frequencies of simply supported 

composite beams (  2

11 n n / D / A   ) is based on assuming a thin beam theory and 

a symmetric cross-ply laminate. It cannot be used for thick laminates and those that have 

any kind of coupling.  
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The inclusion of shear deformation in the analysis of beams was first made by 

Timoshenko [1] and this problem has been incorporated by most researchers. But to the 

knowledge of the author, there is no simple approach for dynamic analysis of composite 

beams considering all kinds of couplings. Kapania, Raciti [2] conducted a review on 

advances in analysis of laminated beams and plates vibration and wave propagation in 

1989. Chidamparam and Leissa [3] reviewed the published literature on the vibrations of 

curved bars, beams, rings and arches of arbitrary shape which lie in a plane in 1993. 

Among first order shear deformation theories (FSDT) the works by Chandrashekhara et 

al. [4], Krishnaswamy et al. [5], Abramovich et al [6, 7] were validated for symmetric 

cross-ply laminates that have no coupling. In the FSDT model by Teboub and Hajela [8] 

or SDT models by Banerjee [9, 10] or Lee at al. [11] symmetric beams having fibers in 

one direction (only bending-twisting coupling) were considered. The FSDT models by 

Eisenberger et al. [12] and Qatu [13, 14] for curved beams (that can be easily specialized 

to straight beams) was also validated for cross-ply laminates (only bending-stretching 

coupling).   

Some researchers developed higher order shear deformation theories (HSDT) to 

address issues of cross sectional warping and transverse normal strains. Khdier and 

Reddy [15] determined natural frequencies of the third-order, second-order, first-order 

and classical arch theories for cross-ply laminates. Kant et al. [16] and Matsunaga [17] 

studied vibration of cross-ply laminated beams according to HSDT. 

Subramanian [18] proposed two higher order and two finite element approaches 

and validated them for symmetric cross-ply laminated beams. Kapuria et al. [19] used 

zigzag theory to satisfy continuity of transverse shear stress through the laminate to 
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assess the dynamic and buckling response of laminated beams. The results showed that 

the zigzag theory can be accurate for natural frequency calculations of beams with 

specific geometry and lay-up (symmetric or cross-ply laminates). 

Zhen and Wanji [20] compared different displacement-based theories for vibration of 

composite and sandwich beams including Kapuria’s model [19] and different higher 

order theories. They proposed the global-local higher order theory that was validated for 

cross-ply laminates. 

In this chapter, classic and FSDT beam models will be evaluated for their 

accuracy in static and vibration analysis using different approaches for stiffness 

parameters calculation. Their results will be compared with those obtained using a 3D 

finite element model for different laminates (unidirectional, symmetric and asymmetric 

cross ply and symmetric and asymmetric angle-ply).  

 

Composite Beams Stiffness Calculation 

Figure 3.1 shows a free body diagram of a differential beam element. Beams are 

considered as one dimensional (1D) load carriers and the main parameter for analysis of 

load carrier structures is stiffness. 

 

 

Figure 3.1   Free body diagram of a differential beam element 
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 In general for composite laminates, the stiffness matrix composed of ABD 

parameters is used to relate the stress resultants to strains. 

011 12 16 11 12 16

012 22 26 12 22 26

16 26 66 16 26 66

11 12 16 11 12 16
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 where regular ABD stiffness parameters for beams are defined as. 
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(4)

Note here that the above definitions are different from those used for general 

laminate analysis in the literature. The width in the above terms is included in the 

definitions of these terms, while it is customary to leave this term out in general laminate 

analysis. In 1D analysis of beams, as we will see later, only parameters in the x direction 

are considered and other parameters are ignored. So instead of 6X6 stiffness matrix for 

general laminate analysis we will have a 2X2 matrix for CBT and 3X3 matrix for SDBT. 

This formulation has the disadvantage of not accounting for any coupling other than the 

bending-stretching coupling terms B11. To overcome this problem, we propose that 

instead of the normal definitions of A11, B11, and D11, one can use equivalent stiffness 

parameters that include couplings. That is why we will deal with stiffness parameters 

first. 
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Methods based on flexibility matrix 

 
Kaw [24] proposed first finding the inverse of the ABD matrix (J matrix) for the 

whole laminate. He then defines the laminate modulus of elasticity as  

1

44

[ ]
b

E J ABD
I J

                            (5) 

where J44 is the term in 4th row and 4th column of the inverse of the ABD matrix of the 

laminate and I is the moment of inertia. Then he defines D11 to be 

 11
44

k

b
D

J
                          (6) 

In this chapter this approach is used as an option with assuming the following 

formula for A11 and B11. 

 11
11

k

b
A

J
                         (7) 

 11
14

1
k

B
J

 (assumed zero for symmetric laminates)                       (8) 

Rios and Chan [25] proposed the following formulation for parameters A11, B11, 

and D11. 

 11 2
11

11
11

1
c

A
b

a
d




                           (9) 

 11
11 11

11
11

1
c

B
a d

b
b




                         (10) 

 11 2
11

11
11

1
c

D
b

d
a




                         (11) 
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where a11, b11, and d11 are relevant compliance matrix terms. According to the previous 

formulation we have a11=J11, b11=J14, d11=J44. 

 
 

Method based on ply equivalent modulus 

The formulation for the stiffness in equations 2-4 is based on plate formulation 

and two dimensional loading. However, one dimensional formulation is appropriate for 

beam formulation. If a uniaxial loading  x  on an orthotropic lamina is assumed, where 

the fibers direction (direction 1) is at angle   to reference axis x. The normal and shear 

stress through 1 and 2 axis is 

2
1 cosx                             (12) 

2
2 sinx                                        (13) 

12 sin cosx                              (14) 

The strains in the 1 and 2 directions are 

2 2
1 2

1 21 21
1 2 1 2

cos sin
xE E E E

      
 

    
 

                      (15) 

2 2
2 1

2 12 12
2 1 2 1

sin cos
xE E E E

      
 

    
 

                      (16) 

12
12

12 12

sin cosx

G G

                              (17) 

 The stains in the x and y directions can be found by the transformation law 

2 2
1 2 12cos sin sin cosx                                (18) 

Substitution of equations 15-17 in equation 18 gives the strain 
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4 4
2 212

1 12 1 2

2cos 1 sin
cos sinx x E G E E

    
  

     
  

                    (19) 

Then the formulation for the equivalent modulus of elasticity of the lamina is 

       4 4
2 212

11 12 11 22

cos sin21 1
cos sink k

k kk
xE E G E E

   
 

    
 

                    (20) 

Figure 3.2 shows the variation of Ex and 11Q divided by E1 as a function of 

laminate angle. 

 

Figure 3.2   Variation of Ex and 11Q divided by E1 as a function of laminate angle 

Equivalent A11, B11and D11 using these formulas would be 

 

   11 1
1

N
k
x k ke

k

A bE h h 


                          (21) 

   2 2
1

11
1 2

N
k kk

xe
k

h h
B bE






                               (22) 

   3 3
1

11
1 3

N
k kk

xe
k

h h
D bE






                               (23) 

11Q /E1
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Table 3.1 shows nondimensional A11, B11, and D11 for some laminates using different 

methods proposed. 

 
 
Table 3.1 Nondimensional A11, B11, and D11 using different formulation for a 

graphite/epoxy beam with different laminates (E1 = 138, E2 =8.96, G12= 7.1 
GPa, υ12=0.3) 

 

A11/E2bh 
Laminate

(A11) (A11)e (A11)f (A11)c 

[0]4 15.492 15.402 15.402 15.402 

[0/90]s 8.2491 8.2009 8.2381 8.2381 

[02/902] 8.2491 8.2009 3.4681 8.2229 

[45]4 5.0678 1.7483 1.7483 1.7483 

[302/602] 5.8632 2.1511 2.0592 2.6866 

B11/E2bh2 
Laminate

(B11) (B11)e (B11)f (B11)c 

[0]4 0 0 0 0 

[0/90]s 0 0 0 0 

[02/902] 1.8108 1.8002 1.3166 1.8051 

[45]4 0 0 0 0 

[302/602] 0.9054 0.2236 1.6373 0.4988 

D11/E2bh3 
Laminate

(D11) (D11)e (D11)f (D11)c 

[0]4 1.2910 1.2835 1.2835 1.2835 

[0/90]s 1.1401 1.1335 1.1374 1.1374 

[02/902] 0.6874 0.6834 0.2890 0.6852 

[45]4 0.4223 0.1457 0.2716 0.2716 

[302/602] 0.4886 0.1793 0.3040 0.3966 
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Static Analysis 

In the static analysis section, we will consider composite beams loaded with 

classical loading conditions and derive differential equations for displacements. Those 

equations will be solved with classical boundary conditions of both ends simply 

supported, both ends clamped and cantilever boundary conditions. We will use the static 

analyses to find deflection and stress of composite beams under both CBT and SDBT 

using both Euler approach and matrix approach. 

 
 

Classical Beam Theory  

Applying the traditional assumptions for thin beams (normals to the beam 

midsurface remain straight and normal, both rotary inertia and shear deformation are 

neglected), strains and curvature change at the middle surface are 

0
0

u

x
 




, 
2

2

w

x
 
 


 (24)

where u, w are displacements in x and z directions, respectively. Normal strain at any 

point would be 

0 z     (25)

Force and moment resultants are calculated using  

11 11 0

11 11

A BN

B DM




    
     

    
 (26)

The equations of motion are 

2

2 z

M
p

x


 


 (27)
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x

N
p

x


 


 (28)

The potential strain energy stored in a beam during elastic deformation is 

 00

1 1

2 2

l

V
PE dV N M dx       (29)

Writing this expression for every lamina and summing for the laminate we have 

  2 2
11 0 11 0 110

1
2

2

l
PE A B D dx       (30)

Substituting kinematic relations (24) into equation (30), it will become 

22 2 2
0 0

11 11 112 20

1
2

2

l u u w w
PE A B D dx

x x x x

                                
  (31)

The work done by external forces on the beam is 

 00

1

2

l

x zW p u p w dx   (32)

The kinetic energy for each lamina is 

 
1

2 2

0

0

1

2
k

k

l zk

z

u w
KE b dx

x t




              
   (33)

where  k  is the lamina density per unit volume, and t is time. The kinetic energy of the 

entire beam is 

2 2

01

02

l uI w
KE dx

t t

              
  (34)

where I1 is the average mass density of the beam per unit length. These energy 

expressions can be used in an energy-based analysis like finite element or Ritz analyses. 

 



www.manaraa.com

 

 74

Euler Approach (CBT) 

Inserting constitutive equations in equations of motion (26) will result in 

2 3

11 112 3
( ) 0

u w
A B p x

x x

 
  

 
 (35)

3 4

11 113 4
( ) 0

u w
B D q x

x x

 
  

 
 (36)

Solving these two equations for u and w will result in the following differential 

equations. 

2 4
11 11 11 11

4
11 11

( )
( )

A D B Bw p x
q x

A x A x

   
     

 (37)

32
011 11 11 11

3
11 11

( )
( )

uA D B D p x
q x

B x B x

   
     

 (38)

Stress in the axial direction in any lamina can be found by the following equation 

 
2

0
11 0 11 2x

u w
Q z Q z

x x
  

  
      

 (39)

Different loading and boundary conditions can be applied to these equations in 

order to find equations for u and w. These boundary conditions are 

Simply supported: 0, 0w M   

Clamped: 0, 0
dw

w
dx

   

Free: 0, 0V M   

where V and M are shear force and bending moment and are linearly dependent on third 

and second derivatives of w, respectively. Here, we propose solutions for both ends 

simply supported and both ends clamped with constant loading q0. For specific case of 
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q(x)=q0 with simply supported boundary conditions at both ends and assuming u0(0)=0 

we have 

4 342
011 11 11

11

( ) 2
24

q lA D B x x x
w x

A l l l

                  
         

 (40)

3 232
011 11 11

0
11

( ) 4 6
24

q lA D B x x
u x

B l l

             
       

 (41)

   
22

0
11 11 112

11 11 112
x

q l x x
Q B zA

l lA D B


                
 (42)

   0
11 11 112

11 11 11

1
2 1

2

z z
x

xz h h

q l x
dz Q B zA dz

b x lb A D B

             
   (43)

for clamped boundary conditions at both ends we have 

4 3 242
011 11 11

11

( ) 2
24

q lA D B x x x
w x

A l l l

                  
         

 (44)

3 232
011 11 11

0
11

( ) 4 6 2
24

q lA D B x x x
u x

B l l l

                  
         

 (45)

   
22

0
11 11 112

11 11 11

1

62
x

q l x x
Q B zA

l lA D B


                 
 (46)

   0
11 11 112

11 11 11

1
2 1

2

z z
x

xz h h

q l x
dz Q B zA dz

b x lb A D B

             
   (47)

One should note that for the simply supported boundary condition the maximum 

moment and consequently maximum stress occurs at the middle of the beam, while for 

the clamped case maximum stress occurs at the two ends.  

 



www.manaraa.com

 

 76

Matrix approach (CBT) 

Inserting the strain and curvature relations in the force and moment resultants 

equations and using those in the equations of motion, one can express the equations of 

motion in terms of displacements. Expressing those equations in matrix form we have 

011 12

021 22

0

0
x

z

uL L p

wL L p

      
             

 (48)

where 
2

11 11 2
L A

x





, 

4

22 11 4
L D

x





, 

3

12 21 11 3
L L B

x


  


. 

The beam is supposed to have simply supported boundary condition. So we have 

on x=0, l. 

0 0x xw N M    (49)

The above equations of motion as well as boundary terms are satisfied if one 

chooses displacements as 

   
1

, cos( ), sin( )
M

m m m m
m

u w A x C x 



 

(50)

where m m / l     and l is the beam length. The external forces can be expanded in a 

Fourier series in x 

     
1

, sin , cos
M

x z xm m zm m
m

p p p x p x 


   
 

(51)

Substituting these equations in the equations of motion we have the characteristic 

equation 

11 12

21 22

0m xm

m zm

A pC C

C pC C

    
             

(52)



www.manaraa.com

 

 77

1

11 12

21 22

m xm

m zm

A pC C

C pC C

     
    
      

(53)

where 2
11 11mC A  , 4

22 11mC D , 3
21 12 11mC C B   . Stress in the axial direction would 

be found using the following procedure.  

1

11 110

11 11

A B N

B D M





    

     
    

 (54)

 11 0x Q z     (55)

 

Shear Deformation Beam Theory 

In this chapter a first order shear deformation theory (FSDT) approach is to 

account for shear deformation and rotary inertia.  

0 0,u u z w w    (56)

Strains and curvature changes at the middle surface are: 

0
0

u

x
 




, 
x

 



, 
w

x
 
 


 (57)

where 0 is middle surface strain,   is the shear strain at the neutral axis and  is the 

rotation of a line element perpendicular to the original direction. Normal strain at any 

point can be found using equation 25. Force and moment resultants as well as shear 

forces are calculated using  


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(58)

where for A55 we have  
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(59)

The equations of motion considering rotary inertia and shear deformation are 

x

N
p

x


 

  

(60)

z

Q
p

x


 


 (61)

0
M

Q
x


 

  
(62)

The potential strain energy stored in a beam during elastic deformation is 

00

1 1

2 2

l

V
PE dV N M Q dx

x

           (63)

Writing this expression for every lamina and summing for the laminate we have 

  2 2 2
11 0 11 0 11 550

1
2

2

l
PE A B D A dx         (64)

Substituting kinematic relations into equation (64) it will become 

2 2 2

0 0
11 11 11 550

1
2

2

l u u w
PE A B D A dx

x x x x x

  
                                        
  (65)

The work done by external forces on the beam is found by equation (32). Finding 

the kinetic energy for each layer and then summing for all layers yield the kinetic energy 

of the entire beam. 

2 2 2

0 0
1 1 2 30

2
l u uw

KE I I I I dx
t t t t t

                                       
  (66)

These energy expressions can be used in an energy-based analysis like finite element or 

Ritz analyses. 
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Euler Approach (SDBT) 

Inserting constitutive equations in the equations of motion will result in 

2 2
0

11 112 2
( ) 0x

u
A B p x

x x

 
  

 
 (67)

 
2

55 2
0z

w
A p x

x x

  
     

 (68)
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11 11 552 2
0

u dw
B D A

x x dx

           
 (69)

Taking, the second derivative of equation (68) and solving for 
3

3x




 from 

equations (67, 69) will result in the following equations. 

4 2
11 11

4 2 2 2
11 11 11 55 11 11 11

1 ( ) ( )
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A Bw q x p x
q x

x A D B A x A D B x
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x A D B A x

  
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 (71)
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B Ap x
q x

x A D B x A D B

     
          

 (72)

For the specific case of q(x)=q0 with simply supported boundary conditions we 

have 

4 3 24 2
0 011

2
11 11 11 55

( ) 2
24 2

q l q lA x x x x x
w x

A D B l l l A l l

                                                  
 (73)

3 23
0 011

2
11 11 11 55

( ) 1 4 6
24 2

q l q lA x x
x

A D B l l A


                       
 (74)
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   
22 2

0 0
11 11 112

5511 11 11

2

2
x

q l q l zx x
Q B zA

l l AA D B


                 
 (75)

Maximum deflection occurs at the middle of the beam equal to 

4 2
0 011

max 2
11 11 11 55

5

384 8

q l q lA
w

A D B A

 
   

 (76)

The first term in equation (76) is deflection due to bending and the second term is 

due to shear. For the clamped boundary condition one can use the term due to bending 

from CBT analysis and add the term due to shear. 

 

Matrix Approach (SDBT) 

Equations of motion in terms of the displacements in matrix form  are 

11 12 13 0

21 22 23 0

31 32 33

0

0

0 0

x

z

L L L u p

L L L w p

L L L 

       
                
              

 (77)

where
2

11 11 2
L A

x





,

2

22 55 2
L A

x


 


,

2

33 11 552
L D A

x


 


,

2

13 31 11 2
L L B

x


 


,

23 32 55L L A
x


  


, 12 21 0L L  . The following simply supported boundary conditions 

are used on x=0, l 

0 0xw N
x


  


 (78)

The above equations would be satisfied if 

   0 0
1

, , cos( ), sin( ), cos( )
m

m m m m m m
m

u w A x C x B x   


  (79)

Substituting these equations in the equations of motion we have the characteristic 

equation 
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1

11 12 13

12 22 23

13 23 33 0

m xm

m zm

m

A C C C p

C C C C p

B C C C

      
          
          

 
(80)

where 2
11 11mC A  , 2

22 55mC A , 5511
2

33 ADC m   , 2
31 13 11mC C B   , 

23 32 55 mC C A    , 21 12 0C C  . 

 

Vibration Analysis 

In this section, classic and FSDT beam models will be evaluated for their 

accuracy in a vibration analysis using different approaches for stiffness parameters 

calculation. Their results will be compared with those obtained using a 3D finite element 

model for different laminates (unidirectional, symmetric and asymmetric cross ply and 

symmetric and asymmetric angle-ply).  

 

Classical Beam Theory  

Equations of motion for dynamic analysis of laminated beams are 

2 2

12 2

 
 

  z

M w
I p

x t
 

(81)

2

1 2 x

N u
I p

x t

 
 

 
 

(82)

where  1 1
1

N
( k )

k k
k

I b h h 


  . Expressing those equations in matrix form we have for 

free vibration 

2
0 011 12 1

2
0 021 22 1

0 0

0 0

u uL L I

w wL L I t

        
                 

 (83)

The equations of motion as well as simply supported boundary terms are satisfied 

if one chooses displacements as 
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   
1

, cos( ), sin( ) sin( )
M

m m m m
m

u w A x C x t  


  (84)

Substituting equation 84 in the equations of motion the characteristic equation is 

11 12 12

21 22 1

0
0

0
m m xm

m m zm

A A pC C I

C C pC C I


        
                   

 (85)

The nontrivial solution for natural frequency can be found by setting the 

determinant of the characteristic equation of matrix to zero. 

One should note here that if the laminate is symmetric, the B11 term vanishes and 

the bending frequencies are totally decoupled from axial ones. As a result, the following 

well-known formula for the natural frequencies of a symmetrically laminated simply 

supported composite beam is 

2

11
n

Dn

A




   
 

 (86)

where  is the density,   is length and A is the cross sectional area of the beam. As we 

will see later it cannot be used for thick laminates and those that have any kind of 

coupling.  

 

Shear Deformation Beam Theory 

The equations of motion considering rotary inertia and shear deformation are  

2 2

1 22 2 x

N u
I I p

x t t

  
  

    
(87)

2

1 2z

Q w
p I

x t

 
  
   

(88)
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2 2

2 32 2

M u
Q I I

x t t

  
  

    
(89)

where        ( ) 2 2 3 3
1 2 3 1 1 1

1

1 1
, , , ,

2 3

N
k

k k k k k k
k

I I I b h h h h h h   


     
 

 . So by expressing the 

equations of motion in terms of displacement we have in matrix form (for free vibration) 

11 12 13 0 1 2 02

21 22 23 0 1 02

31 32 33 2 3

0 0

0 0 0

0 0

L L L u I I u

L L L w I w
t

L L L I I 

         
                    

                  

 (90)

Further mathematical manipulation enables one to express the equations of motion 

in terms of displacements. The following boundary conditions can be applied to the 

beam.  

 Simply supported (S1):  0w N M    (91)
 Simply supported (S2):  0w u M    (92)
Clamped (C1): 0N w     (93)
Clamped (C2): 0u w     (94)
Free (F1): 0N M Q    (95)
Free (F2): 0u M Q    (96)

Exact solution is available for the simply supported S1 boundary conditions where 

we can assume  

   0 0
1

, , cos( ), sin( ), cos( ) sin( )
m

m m m m m m
m

u w A x C x B x t    


                    (97) 

For other boundary conditions, the analysis is not this straightforward and a 

numerical solution is usually employed. In this chapter we deal with the exact solution for 

S1-S1 as well as numerical solutions for C2-C2 and C2-F1 (completely clamped-

completely free) boundary conditions. Using equation 97 in equation 90 will give 
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11 12 13 1 2
2

12 22 23 1

13 23 33 2 3

0

0 0 0

0 0

m m xm

m m nm

m m

C C C A I I A p

C C C C I C p

C C C B I I B


         
                      
                  

                   (98) 

The nontrivial solution for natural frequency can be found by setting the 

determinant of characteristic equation matrix to zero. 

For boundary conditions other than simply supported, the General Differential 

Quadrature (GDQ) method is used to solve the equations. The method has been used by 

several investigators [22, 23]. In this method, the derivative of a function is approximated 

by a weighted linear sum of the function values at all the discrete points. 

 
( )

( )

1

( )n N
ni

ij j
j

dF x
C F x

dx 

  (99)

Generally, by considering the Lagrange interpolation polynomials as test 

functions, the coefficients for the first order derivative become 

(1)
,

( )

( ) ( )
i

ij i j
i j j

M x
C

x x M x 


 (100)

1,

( ) ( )
N

i i j
j j i

M x x x
 

 
 

(101)

for higher order derivatives 

  ( ) (1) ( 1) ( 1)
, . /n n n

ij i j ij ii ij i jC n C C C x x 
     (102)

and for all derivatives 

( ) ( )

1,

N
n n

ii ij
j j i

C C
 

  
 

(103)

The sampling points are selected based on the Chebyshev–Gauss–Lobatto (C–G–

L) grid distribution to get denser population near boundaries. 
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 1
1 cos

2 1i

ia
x

N

  
      

 (104)

 Application of this method to equations of motion with respect to displacement 

functions will give a system of equations in matrix form that in this chapter are solved 

using MATLAB. Then, the results for static and free vibration are compared with those 

obtained using a 3D finite element model for different laminates (unidirectional, 

symmetric and asymmetric cross ply and symmetric and asymmetric angle-ply).  

 
 
Case study 

A rectangular cross section beam model having 1 m length, 0.025 m width, and 

0.05 m height was made in ANSYS finite element code. Solid elements were used to 

apply 3D elasticity. A convergence study was done and the convergent model had 8 

elements in thickness, 4 elements in width direction and 160 elements in length direction 

comprising of more than 5000 elements. Ratio of length to height of 20 was selected to be 

at the border of thin beams. Figure 3.3 shows the model in ANSYS® software.  

 

 

Figure 3.3   FEM model in ANSYS software 
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The simply supported boundary condition was modeled by applying constraints 

on the z direction at midline of the end faces. The material properties are 

 Graphite/Epoxy, E1 = 138 GPa, E2 =8.96 GPa, υ12=0.3, G12= 7.1 GPa, ρ =1580 kg/m3, a/h 

= 20, b/h =0.5, E1/E2 = 15.4, G12/E2 = 0.79,  12 = 0.3 

 

Results and Discussion 

Different stiffness parameters for calculating of deflection and natural frequencies 

were evaluated. Five different laminates were selected to cover different kinds of 

composite beams with rectangular cross section. These include unidirectional, symmetric 

cross-ply, asymmetric cross-ply, angle-ply and general laminates. The results for 

nondimensional maximum deflection    3 3 4
110 / zE h w p l  and natural frequencies 

2 2
112 /l E h   of the first 5 modes for different boundary conditions are given in Tables 

3.2 through 3.8. The deflection using (S11)f is not presented because of ill conditioning. 

The average error in all cases is around 1 %. 

 

Table 3.2 Nondimensional maximum deflection    3 3 4
110 / zE h w p l of rectangular 

graphite/epoxy simply supported beam using matrix approach (E1 = 138, E2 

=8.96, G12= 7.1 GPa, υ12=0.3) 
 

CBT  SDBT Laminate 
(S11) (S11)e (S11)c (S11) (S11)e (S11)c 

3D FEM 

[0]4 1.566 1.575 1.575 1.728 1.739 1.739 1.723 
[0/90]s 1.773 1.784 1.778 1.937 1.948 1.941 1.923 
[02/902] 6.975 7.016 6.997 7.138 7.179 7.160 6.965 

[45]4 4.789 13.88 13.88 4.951 14.04 14.04 12.79 
[302/602] 5.798 12.96 11.80 5.961 13.13 11.96 12.50 
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Table 3.3 Nondimensional maximum deflection    3 3 4
110 / zE h w p l of rectangular 

graphite/epoxy simply supported beam using Euler approach (E1 = 138, E2 

=8.96, G12= 7.1 GPa, υ12=0.3) 
 

CBT  SDBT Laminate 
(S11) (S11)e (S11)c (S11) (S11)e (S11)c 

3D FEM 

[0]4 1.554 1.563 1.563 1.704 1.713 1.713 1.723 
[0/90]s 1.758 1.770 1.763 1.910 1.920 1.913 1.923 
[02/902] 6.917 6.417 6.940 7.067 6.567 7.090 6.965 

[45]4 4.749 13.77 13.77 4.899 13.92 13.92 12.79 
[302/602] 5.749 12.74 11.70 5.900 12.89 11.85 12.50 
 
 
Table 3.4 Nondimensional maximum deflection    3 3 4

110 / zE h w p l of rectangular 

graphite/epoxy clamped-clamped beam using Euler approach (E1 = 138, E2 

=8.96, G12= 7.1 GPa, υ12=0.3) 
 

CBT SDBT FEM 
Laminate 

(S11) (S11)e (S11)c (S11) (S11)e (S11)c 3D 

[0]4 0.3107 0.3126 0.3126 0.4611 0.4630 0.4630 0.4585 

[0/90]s 0.3517 0.3538 0.3526 0.5021 0.5042 0.5030 0.4934 

[45]4 0.9498 2.753 2.753 1.100 2.903 2.903 2.853 

[0/90]s 1.383 1.283 6.940 1.534 1.434 7.090 1.542 

[302/602] 1.151 2.548 11.70 1.301 2.698 11.85 2.903 

 
 
Table 3.5 Nondimensional maximum deflection    3 3 4

110 / zE h w p l of rectangular 

graphite/epoxy clamped-clamped and clamped-free beam (E1 = 138, E2 =8.96, 
G12= 7.1 GPa, υ12=0.3) 

 
Laminate [0]4 [0/90]s [02/902] [45]4 [302/602] 

FSDT (ABD)e 0.4629 0.5043 1.542 2.721 2.903 
3D FEM 0.4604 0.4966 1.563 2.649 2.855 CC
Error (%) 0.54 1.54 -1.36 2.74 1.71 

FSDT (ABD)e 15.60 17.59 67.40 124.0 132.7 
3D FEM 15.59 17.53 67.39 121.9 131.8 CF 

E (%) 0.05 0.30 0.00 1.74 0.69 
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Table 3.6 Nondimensional natural frequencies  2 2
112 /l E h    of rectangular 

graphite/epoxy simply supported beam (E1 = 138, E2 =8.96, G12= 7.1 GPa, 
υ12=0.3,  =1580 kg/m3) 

 
[0]4

n CBT SDBT
  (ABD) (ABD)e (ABD)k(ABD)c(ABD)(ABD)e(ABD)k (ABD)c 

3D FEM

1 9.898 9.869 9.869 9.869 9.431 9.406 9.406 9.406 9.373
2 39.59 39.48 39.48 39.48 33.41 33.34 33.34 33.34 32.98
3 89.08 88.82 88.82 88.82 64.53 64.43 64.43 64.43 63.28
4 158.4 157.9 157.9 157.9 98.11 98.00 98.00 98.00 95.77
5 247.5 246.7 246.7 246.7 132.2 132.1 132.1 132.1 128.7

[0/90]s

n CBT SDBT
  (ABD) (ABD)e (ABD)k(ABD)c(ABD)(ABD)e(ABD)k (ABD)c 

3D FEM

1 9.302 9.275 9.291 9.291 8.910 8.886 8.901 8.901 8.873
2 37.21 37.10 37.16 37.16 31.93 31.86 31.90 31.90 31.65
3 83.72 83.47 83.62 83.62 62.37 62.27 62.33 62.33 61.51
4 148.8 148.4 148.7 148.7 95.66 95.54 95.61 95.61 93.91
5 232.5 231.9 232.3 232.3 129.7 129.6 129.7 129.7 126.9

[02/902]
n CBT SDBT FEM
  (ABD) (ABD)e (ABD)k(ABD)c(ABD)(ABD)e(ABD)k (ABD)c 3D
1 4.688 4.674 NA 4.680 4.637 4.810 NA 4.630 4.61
2 18.72 18.66 NA 18.69 17.95 18.58 NA 17.92 17.65
3 41.99 41.87 NA 41.92 38.41 39.62 NA 38.36 37.25
4 74.34 74.12 NA 74.22 64.16 65.94 NA 64.09 61.35
5 115.5 115.2 NA 115.3 93.49 95.73 NA 93.40 88.30
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Table 3.6    (continued) 
 

[45]4

n CBT SDBT FEM
  (ABD) (ABD)e (ABD)k (ABD)c (ABD) (ABD)e (ABD)k (ABD)c 3D
1 5.661 3.325 4.540 4.540 5.566 3.303 4.489 4.489 3.354
2 22.65 18.16 13.30 18.16 21.23 12.96 17.38 17.38 12.97
3 50.95 40.86 29.93 40.86 44.56 28.30 37.24 37.24 28.32
4 90.58 72.64 53.20 72.64 72.92 48.41 62.29 62.29 48.32
5 141.5 113.5 83.13 113.5 104.3 72.32 90.94 90.94 71.93

[302/602]
n CBT SDBT FEM
  (ABD) (ABD)e (ABD)k (ABD)c (ABD) (ABD)e (ABD)k (ABD)c 3D
1 5.143 3.440 NA 4.801 5.073 3.433 NA 4.745 3.483
2 20.55 13.76 NA 19.18 19.51 13.46 NA 18.33 13.46
3 46.18 30.93 NA 43.06 41.37 29.34 NA 39.13 29.22
4 81.92 54.93 NA 76.31 68.43 50.10 NA 65.19 49.86
5 127.6 85.7 NA 118.7 98.8 74.69 NA 94.76 73.97

 
 
Table 3.7 Nondimensional natural frequencies  2 2

112 /l E h    of rectangular 

graphite/epoxy clamped-clamped beam (E1 = 138, E2 =8.96, G12= 7.1 GPa, 
υ12=0.3,  =1580 kg/m3) 

 
CC [0]4 [0/90]s [02/902] [45]4 [302/602] 

Mode (ABD)e FEM (ABD)e FEM (ABD)e FEM (ABD)e FEM (ABD)e FEM

1 18.26 18.32 17.50 17.65 10.04 9.972 7.325 7.389 7.565 7.669

2 42.50 42.78 41.21 41.78 26.04 25.70 19.52 19.68 20.11 20.36

3 71.53 72.25 69.84 71.10 73.08 71.39 36.72 36.98 37.73 38.22

4 102.8 104.2 100.9 103.0 101.2 98.54 57.89 58.26 59.32 59.94

5 135.3 137.4 133.2 136.4 131.2 127.4 82.17 82.61 84.00 84.74

E(%) 0.96 1.68 -2.01 0.71 1.16 
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Table 3.8 Nondimensional natural frequencies  2 2
112 /l E h   of rectangular 

graphite/epoxy clamped-free beam (E1 = 138, E2 =8.96, G12= 7.1 GPa, υ12=0.3, 
 =1580 kg/m3) 

 
CF [0]4 [0/90]s [02/902] [45]4 [302/602] 

Mode (ABD)e FEM (ABD)e FEM (ABD)e FEM (ABD)e FEM (ABD)e FEM 

1 3.435 3.437 3.237 3.242 1.656 1.657 1.181 1.189 1.221 1.237 

2 19.08 19.12 18.20 18.31 10.03 9.986 7.267 7.314 7.507 7.592 

3 46.31 46.51 44.62 45.10 26.72 26.44 19.79 19.91 20.40 20.61 

4 77.84 78.39 75.67 76.78 49.10 48.28 37.35 37.51 38.37 38.73 

5 111.3 112.4 108.9 110.8 75.41 73.79 59.06 59.29 60.58 61.06 

E(%) 0.47 1.02 -1.07 0.56 1.02 

 

The deflection results show that using CBT is not even accurate for slenderness 

ratio of 20. Using FSDT along with normal definition for ABD terms is only accurate for 

cross-ply laminates. However, using equivalent ABDs corrects the results for other 

laminates having different couplings. 

The natural frequencies results show that the classic beam model using normal 

ABD parameters is only valid for 1st mode of cross-ply laminates. The effective length 

becomes less on higher modes and the thin beam assumption no longer applies leading to 

inaccurate results. Although the [45]4 laminate is symmetric; it has bending twisting 

coupling and using the normal ABD formulation leads to inaccurate results. 

The (ABD)e equivalent stiffness parameters improve the classic approach for 

unsymmtric laminates but still not accurate for higher modes since the shear deformation 

is not included. 
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Using FSDT approach for thick beams along with (ABD)e (Eqs. 48-50) one can 

reach accurate results for higher modes. This approach does not have coupling problems 

and accurate results for all laminates are achieved. The overall range of error is about 1 

percent. The other defined equivalent parameters by compliance matrix are not as 

accurate as (ABD)e and even do not have real results in some cases.  

The mode shapes for the first five modes of simply supported beam with laminate 

[302/602] is presented in the following figures. One should note the twist induced in the 

mode shapes due to bending-twisting coupling. 

 

 
 

Figure 3.4   Mode shape number 1 of the straight beam with [302/602] laminate 
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Figure 3.5 Mode shape number 2 of the straight beam with [302/602] laminate 

 
 

Figure 3.6 Mode shape number 3 of the straight beam with [302/602] laminate 
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Figure 3.7 Mode shape number 4 of the straight beam with [302/602] laminate 

 
 

Figure 3.8 Mode shape number 5 of the straight beam with [302/602] laminate 
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In another case, the results provided by Jun et al.  [26] that considers bending-

twisting coupling has been compared with the present method. The first case is a glass-

polyester simply supported unidirectional beam with [45] laminate. The material 

properties are as follows:  

E1=37.41*109, E2=13.67*109, G12=5.478*109, G13=6.03*109, G23=6.666*109 (Pa) 

 3
12 0.3, 1968.9 /kg m   , l=0.11179, b=12.7*10-3, h=3.38*10-3 (m) 

The second case is a graphite-epoxy simply supported beam with [30/50/30/50] 

layup. The material properties are as follows: 

E1=144.8*109, E2=9.65*109, G12= G13=4.14*109, G23=3.45*109 (Pa) 

 3
12 0.3, 1389.23 /kg m   , l=0.381, b=25.4*10-3, h=25.4*10-3 (m) 

The results of first five natural frequencies are presented in Table 3.9. 

 
Table 3.9   Comparison of the natural frequencies (Hz) in present method to Ref  [26] 
 

Case 1  Case 2   

Mode Ref  [26] present Ref  [26] present 3D FEM 

1 348.1 338.2 353.7 252.4 275.6 

2 1346.2 1347.3 1114.3 992.6 1018 

3 3017.6 3010.9 2434.2 2171.9 2181 

4 5285.3 5303.1 3450.3 3717 3627 

5   4264.5 5542.8 5257 

 

The results show that since bending-twisting coupling is considered in Ref  [26] 

the results in case 1 match well with the present method. However, case 2 is a general 

laminate with all couplings present and comparison of the result in Ref  [26] with 3D 
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FEM shows that it has considerable error. But the present method accurately predicts the 

natural frequencies. 

 

 

Conclusion 

A modified FSDT model was proposed for static and dynamic analysis of 

composite beams. The model accounts for various laminate couplings and shear 

deformation and rotary inertia. It is compared to different approaches and 3D FEM 

model. The results showed good accuracy of the model for rectangular beams. This 

model provides an accurate approach for calculating the natural frequencies of beams 

with arbitrary laminate for engineers and scientists. 
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CHAPTER IV 

 STATIC AND VIBRATION ANALYSES OF THICK GENERALLY LAMINATED 

DEEP CURVED BEAMS WITH  DIFFERENT BOUNDARY  CONDITIONS 

 
 

Introduction  

Composite materials offer higher strength and stiffness to weight ratios than most 

metallic materials and have the possibility to tailor the design for specific purposes using 

different laminations. Among composite structures, curved beam components constitute a 

frequently encountered structural element of aerospace, marine and other structures. 

Since all beam theories are based on three dimensional (3D) elasticity, 3D-based 

analyses (including finite element analyses, FEA) are the most accurate analytical ones. 

However, 3D FEA is a very expensive procedure demanding expensive machines and/or 

longer computational times if used for large scale structures. This is particularly the case 

when one dimension is significantly larger than the other two. For these structures, beam 

models are very efficient provided that they are built on accurate models and are verified 

against accurate 3D analyses. Several researchers have worked on the analysis of 

composite beam structures. Kapania and Raciti [1,2] published a review on advances in 

the analysis of laminated beams and plates. Rosen  [3] reviewed the research on static, 

dynamic, and stability analysis of pretwisted rods and beams. Chidamparam and Leissa 

 [3] reviewed the published literature on the vibrations of curved bars, beams, and rings of 
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arbitrary shape which lie in a plane. Qatu  [5] dedicated a book to vibration of composite 

beams, plates and shells. Hodges  [6] made an extensive literature survey of the modern 

history of beam analysis. Recently, a review is conducted on laminated beams by the 

authors  [7]. Among the conclusions of this review is the lack of a consistent set of 

equations that treat moderately thick beams with curvature and general lamination 

sequence. 

This chapter is concerned with the development of a general approach for static 

and in-plane free vibration analyses of generally laminated composite deep curved beams. 

While the vibration part was treated before, the formulation there was limited to simply 

supported beams with cross-ply laminates  [8]. In this chapter accurate deflection, moment 

resultants and natural frequencies of generally laminated deep curved beams are 

presented and can be used for possible use by researchers and practicing engineers. 

 

Complexities in analysis of laminated curved beams 

There are three complexities in the analysis of composite curved thick beams: 

shear deformation, deepness, and material couplings. These effects are not considered 

simultaneously in the literature. Moreover, for coupling problem, there has not been a 

method that considers all kind of couplings. In this chapter a simple method is proposed 

that considers all these problems. 

 
 

Effect of shear deformation 

The inclusion of shear deformation in the analysis of beams was first made by 

Timoshenko  [9] and this inclusion has been incorporated by most researchers dealing 
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with composite materials. This effect is higher in composite materials because structural 

or machine components made of composite materials are generally thicker and more 

flexible in shear than metallic materials. Consequently, the assumption of classical Euler-

Bernoulli theory is usually inaccurate. In this chapter a first order shear deformation 

theory (FSDT), will be used.  

 

Effect of deepness in constitutive equations 

The geometry of the beam is depicted in Figure 4.1. The deepness or curvature 

complexity comes from the term (1+z/R) in the kinematic relations for strain. This term is 

either neglected (shallow beam theories) [10, 11], expanded [12, 13] or exactly integrated 

[5, 8] into the equations. Qatu [5, 8] showed that this term should be included in the 

analysis especially when the ratio of the span length to radius in a static analysis or the 

half sine wave length to radius ratio in a vibration analysis is more than 0.5. For higher 

ratios, shallow beam theory becomes inaccurate and a deep beam theory should be used. 

In this chapter we use the exact integration of the term into the ABD parameters. 
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Figure 4.1   Geometry of the curved Beam. 

 

Material coupling 

The coupling complexity arises from the lamination sequence. In some 

applications such as aerospace structures, some parts are very weight limited and/or a 

specific deformation under loading may be desired (aeroelastic tailoring). In such 

applications the laminate usually has one of the material couplings that should be taken 

into account in the analysis of beam structures. These couplings include bending-twisting 

couplings, extension-bending coupling and extension-shearing couplings. 

The only type of laminate that does not have any of the aforementioned couplings 

is symmetric cross-ply. For other laminates, a kind of coupling exists and introduces 

complexities in reducing the 3D problem into a one dimensional (1D). In 1D analysis of 

beams, 18 parameters in the ABD stiffness matrix are reduced to only 3 parameters (A11, 

B11, D11) and only one term of the bending-stretching coupling is taken into account (i.e. 

B11). In beams with layup other than symmetric cross ply, other coupling terms are not 

zero and ignoring them will result in inaccurate analyses. This problem raises the need to 

z


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redefine the stiffness parameters so that the couplings can be considered in these three 

stiffness terms. This complexity has been shown to be very important and introduces 

errors in the analysis of beams  [14]. Most of the papers published so far are limited to 

special laminates. Among FSDT works, some were validated for isotropic  [15], or 

symmetric cross-ply laminates  that have no coupling [16-20], or cross-ply laminates that 

have only bending-stretching coupling [8, 21]. In some other models, unidirectional 

beams with only bending-twisting coupling [22-26] were considered. A formulation for 

bending stiffness was proposed by Boay and Wee  [14] and was applied to symmetric and 

asymmetric angle ply (bending-twisting coupling) using Euler-Bernoulli beam theory.  

Higher order shear deformation theories (HSDT) were developed for composite 

beams to address issues of cross sectional warping and transverse normal strains. Most of 

them were validated for cross-ply laminates [11, 27-29]. Kapuria et al.  [30] used zigzag 

theory to satisfy continuity of transverse shear stress through the laminate and showed to 

be accurate for natural frequency calculations of beams with specific geometry and lay-up 

(symmetric or cross-ply laminates). Another theory was global-local higher order theory 

proposed for beams by Zhen and Wanji  [31] that was validated for cross-ply laminates.  

Another problem that appears in asymmetric laminates is that in-plane and out-of-

plane vibrations are coupled and those equations must be solved together. But as 

Bhimaraddi  [15] showed, this has a very little effect for in-plane flexural vibrations. 

However, for out-of-plane or more importantly extensional modes, this effect is high and 

the equations should be solved coupled together.  

Hajianmaleki and Qatu [32, 33] showed that by using equivalent modulus of 

elasticity of each lamina, one can get accurate results for static and dynamic analyses of 
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generally laminated straight beams with any kind of coupling. The equivalent modulus of 

elasticity of each lamina is found using equation 4. 

       4 4
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Using modified stiffness parameter for curved beam, we have for ABD terms 
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(7)

In order to consider all complexities in laminated deep beams analysis, the 

equations 5-7 are proposed in this chapter to be used in analysis of laminated curved 

beams.  

 

Analysis of laminated curved beams 

To accommodate for shear deformation, a FSDT is proposed for generally 

laminated curved beams. The basic equations of such theory are described next. 

 

Kinematic relations 

For a curved beam, we have the following equations for displacements, curvature 

changes and strains. 

0 0,u u z w w    (8)
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where u, and w are the displacements in the  and z directions; respectively (see Fig. 

4.1). 0 is the middle surface strain,  is the shear strain at the neutral axis and  is the 

rotation of a line element perpendicular to the original direction; respectively. Normal 

strain at any point is 
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Force and moment resultants as well as shear forces are calculated using  
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where for A55 we have  [5] 
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Equations of motion 

The equations of motion are [5] 
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where 
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For each of the possible special cases, certain parameters will not be needed. For 

example, in a static analysis, the dynamic terms including derivation to time are removed. 

In case of a straight beam, the terms including R are removed. The loading in a normal 

free vibration analysis is ignored. Expressing equations of motion in terms of 

displacement we have in matrix form 
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Boundary conditions 

 The following boundary conditions can be applied to the beam. These conditions would 

be applied on  =0, a.  

 Simply supported (S1):  0w N M    (19a)

 Simply supported (S2):  0w u M    (19b)
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Clamped (C1): 0N w     (20a)

Clamped (C2): 0u w     (20b)

Free (F1): 0N M Q    (21a)

Free (F2): 0u M Q    (21b)

Exact solution is available for the simply supported S1 boundary conditions  [35] 

where we can assume  
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where /m m a  and a is the beam length. The term sin( )t in equation 22 is only 

employed in vibration analysis. For other boundary conditions, the analysis is not this 

straightforward and a numerical solution is usually employed. In this chapter we deal 

with exact solution for S1-S1 as well as numerical solutions for C2-C2 and C2-F1 

(cantilevered; completely clamped-completely free) boundary conditions. 

For the simply supported boundary condition, the loading is expanded using 

Fourier transform 
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Substituting these equations in the equations of motion, the solution for static 

analysis 
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and for free vibration analysis 
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(25) 

 

where  

2
5511

2
11 / RAAC m   ,

2
1155

2
22 / RAAC m  , 5511

2
33 ADC m    

11
32 23 55m

B
C C A

R
          

11 55
12 21 m

A A
C C

R


  
     

  
2

5511
2

1331 / RABCC m    

(26) 

 

The nontrivial solution for natural frequencies can be found by setting the 

determinant of characteristic equation matrix to zero. 

For boundary conditions other than simply supported, the General Differential 

Quadrature (GDQ) method is used to solve the equations. The method has been used by 

several investigators [13, 36, 37]. In this method, the derivative of a function is 

approximated by a weighted linear sum of the function values at all the discrete points. 

 
( )

( )

1

( )n N
ni

ij j
j

dF x
C F x

dx 

  (27)

Generally, by considering the Lagrange interpolation polynomials as test 

functions, the coefficients for the first order derivative become 

(1)
,

( )

( ) ( )
i

ij i j
i j j

M x
C

x x M x 
  

(28)

1,

( ) ( )
N

i i j
j j i

M x x x
 

 
 

(29)

for higher order derivatives 

  ( ) (1) ( 1) ( 1)
, . /n n n

ij i j ij ii ij i jC n C C C x x 
   

 
(30)
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and for all derivatives 

( ) ( )

1,

N
n n

ii ij
j j i

C C
 

  
 

(31)

The sampling points are selected based on the Chebyshev–Gauss–Lobatto (C–G–

L) grid distribution to get denser population near boundaries. 

 1
1 cos

2 1i

ia
x

N

  
        

(32)

 Application of this method to the equations of motion with respect to 

displacement functions will give a system of equations in matrix form that in this chapter 

are solved using MATLAB®. Then, the results for static and free vibration are compared 

with those obtained using a 3D finite element model for different laminates 

(unidirectional, symmetric and asymmetric cross ply and symmetric and asymmetric 

angle-ply) in the next section.  

 

Numerical results 

A rectangular cross section beam model having 1 m length, 0.025 m width, and 

0.05 m height was considered and modeled in ANSYS® finite element code (Fig. 4.2). 

Solid elements were used as the representative of 3D elasticity analysis. A convergence 

study was done and the converged model had 8 elements in the thickness direction, 4 

elements in the width direction and 160 elements in the length direction. A ratio of length 

to height of 20 was selected (often considered as the limit for applying classical beam 

theory). The results of a simply supported beam for a/h=10 has also been derived and 
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presented in Appendix A. The material properties of graphite/epoxy are E1 = 138 GPa, E2 

=8.96 GPa, υ12=0.3, G12= 7.1 GPa, ρ =1580 kg/m3. 

 

 

Figure 4.2   3D Finite Element Model of curved beam in ANSYS 

 

Both static and modal analyses are done and the results are compared to those 

obtained using the proposed set of equations in order to check the accuracy of the model. 

A convergence study was also done for the GDQ analysis and it was found that using 11 

point in the beam would yield convergent results for the first 3 significant figures. 

 

Static analysis 

Nondimensional maximum deflection    3 3 4
110 / nE h w p a  and moment 

   310 / nM p a  of simply supported, clamped-clamped and cantilever curved beams 

using the proposed method and 3D FEM are presented in the Tables 4.1 through 4.3. The 

beam is under uniform normal load pn. In each case, the lower number shows the 3D FEA 
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result. The moment here is determined by using equation 10. The moment using 3D FEA 

is determined by  

A

M zdA 
 

(33)

Since the results are very close for different deepness ratios of simply supported 

and cantilever boundary conditions, they are presented at fewer number of deepness 

ratios. The results show good accuracy for the proposed equations in both shallow and 

deep beams with various kinds of laminates. Some error in the results for the moment is 

due to inaccuracy in integration of the stress over the area especially in bending-twisting 

coupled laminates.  

The first observation made here from Table 4.1 is that almost all results were 

within 5% error when compared with 3D elasticity. The accuracy of deformation 

prediction was higher than moment prediction for almost all cases considered here with 

the exception of the asymmetric angle ply laminate. In general, these observations are 

made for the cases of Tables 4.2 and 4.3. 

 

Free vibration analysis 

Tables 4.4 through 4.6 show the first five nondimensional natural frequencies 

2 2
112 /  a E h  of curved beams with different deepness and boundary conditions. The 

results for a simply supported case are compared to classic beam theory (CBT)  [8] and 

FSDT with different stiffness parameters. As expected, one can see that the classic beam 

model using normal ABD parameters is only valid for 1st mode of cross-ply laminates, 

since it only takes B11 into account. The effective length (length of the half sine wave of 
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the mode) becomes less for higher modes and the thin beam assumption leads to 

inaccurate results. Although the [45]4 laminate is symmetric, it has bending twisting 

coupling and using the normal ABD formulation leads to inaccurate results. 

Using FSDT approach for thick beams along the equivalent modulus of elasticity 

for calculation of the ABD parameters (Eqs. 5-7) one can reach accurate results for all 

cases. This approach does not have coupling problems and accurate results for all 

laminates are achieved. The overall range of error is about 1 percent. The results of GDQ 

analysis for other boundary conditions show the same behavior. These results can be used 

as a benchmark for analysis of curved beams.  

 

Table 4.1 Nondimensional maximum deflection    3 3 4
110 / nE h w p a  and moment 

   310 / nM p a of simply supported curved beam (E1 = 138, E2 =8.96, G12= 7.1 

GPa, υ12=0.3) 
 

[0]4 [0/90]s [02/902] [45]4 [302/602] a/R Method 
w M w M w M w M w M 

Exact 1.752 3.140 1.963 3.140 7.203 3.140 14.16 3.140 13.21 3.140
0.2 

3D FEA 1.745 3.180 1.949 3.058 7.180 3.244 13.63 3.315 12.64 3.136
Exact 1.871 3.248 2.096 3.248 7.621 3.248 15.12 3.248 14.06 3.2480.6 

3D FEA 1.869 3.292 2.087 3.169 7.614 3.362 14.57 3.430 13.47 3.220
Exact 2.149 3.489 2.407 3.489 8.671 3.489 17.37 3.489 16.10 3.4891 

3D FEA 2.159 3.540 2.408 3.351 8.694 3.580 16.76 3.685 15.45 3.558
Exact 4.883 5.319 5.469 5.319 19.27 5.319 39.53 5.319 36.35 5.319

2 
3D FEA 5.030 5.423 5.593 5.084 19.58 5.633 38.36 5.627 35.14 5.368
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Table 4.2   Nondimensional maximum deflection    3 3 4
110 / nE h w p a  and moment 

   310 / nM p a of clamped-clamped curved beam (E1 = 138, E2 =8.96, G12= 7.1 

GPa, υ12=0.3) 
 

[0]4 [0/90]s [02/902] [45]4 [302/602] a/R Method 
w M w M w M w M w M 

GDQ 0.3248 1.462 0.4053 1.674 0.9019 1.788 2.263 1.623 2.048 1.730 
0.2 

3D FEA 0.3241 1.479 0.4005 1.722 0.9025 1.812 2.229 1.493 1.987 1.652 
GDQ 0.1715 0.7712 0.2551 1.053 0.4016 1.049 1.362 0.9752 1.177 1.087 

0.4 
3D FEA 0.1720 0.7960 0.2539 1.092 0.3980 1.029 1.345 0.9004 1.138 1.023 

GDQ 0.09603 0.4316 0.1578 0.6508 0.2090 0.6769 0.8193 0.5848 0.6885 0.6892
0.6 

3D FEA 0.09670 0.4542 0.1578 0.6670 0.2059 0.6461 0.8109 0.5402 0.6646 0.6243
GDQ 0.05948 0.2670 0.1030 0.4239 0.1253 0.4835 0.5261 0.3739 0.4355 0.4694

0.8 
3D FEA 0.06010 0.2747 0.1034 0.4379 0.1228 0.4658 0.5217 0.3424 0.4203 0.4291

GDQ 0.03998 0.1792 0.07122 0.2927 0.08284 0.3706 0.3605 0.2549 0.2958 0.3413
1 

3D FEA 0.04053 0.1846 0.07172 0.2992 0.08090 0.3527 0.3581 0.2339 0.2855 0.3099
GDQ 0.01084 0.04800 0.02017 0.08158 0.02201 0.1637 0.1001 0.06771 0.08074 0.1226

2 
3D FEA 0.01123 0.05121 0.02060 0.07982 0.02119 0.1545 0.1005 0.06203 0.07840 0.1084

 
 
 

Table 4.3 Nondimensional maximum deflection    3 3 4
110 / nE h w p a  and moment 

   310 / nM p a of clamped-free curved beam (E1 = 138, E2 =8.96, G12= 7.1 

GPa, υ12=0.3) 
 

[0]4 [0/90]s [02/902] [45]4 [302/602] a/R Method 
w M w M w M w M w M 

GDQ 15.49 12.46 17.47 12.46 66.63 12.46 131.9 12.46 123.0 12.460.2 
3D FEA 15.49 12.23 17.41 11.89 66.64 12.83 131.0 10.99 120.9 11.69

GDQ 14.65 12.13 16.52 12.13 62.52 12.13 124.9 12.13 116.1 12.130.6 
3D FEA 14.68 11.64 16.51 11.86 62.63 11.88 124.1 10.71 114.3 11.45

GDQ 13.10 11.49 14.78 11.49 55.52 11.49 112.1 11.49 103.9 11.491 
3D FEA 13.18 11.26 14.81 11.25 55.74 11.75 111.3 10.15 102.2 10.97

GDQ 7.788 8.851 8.770 8.851 32.66 8.851 66.28 8.851 61.19 8.851
2 

3D FEA 7.832 8.743 8.789 8.582 32.37 8.875 65.66 7.921 59.93 8.321
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Table 4.4 Nondimensional natural frequencies ( 2 2
112 /  a E h  ) of simply supported 

curved beam (E1 = 138, E2 =8.96, G12= 7.1 GPa, υ12=0.3, 1580  kg/m3) 
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Table 4.4   (continued) 
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Table 4.5  Nondimensional natural frequencies  2 2
112 /a E h    of clamped-clamped 

curved beam (E1 = 138, E2 =8.96, G12= 7.1 GPa, υ12=0.3, 1580  kg/m3) 
 

[0]4 
a/R=0.2 a/R=0.4 a/R=0.6 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 21.72 21.76 29.58 29.60 38.67 38.68 
2 42.42 42.70 42.17 42.45 41.78 42.04 
3 71.69 72.40 72.23 72.92 73.45 74.08 
4 102.8 104.1 102.5 103.9 102.2 103.5 
5 135.7 137.4 135.7 137.4 135.3 137.4 

a/R=0.8 a/R=1 a/R=2 
n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 47.14 47.21 53.54 53.74 NA NA 
2 41.23 41.48 40.56 40.79 35.73 35.83 
3 75.96 76.49 80.71 81.07 59.32 59.72 
4 101.7 102.9 101.0 102.3 96.56 97.58 
5 135.4 137.5 136.0 137.6 148.5 149.0 

[0/90]s 
a/R=0.2 a/R=0.4 a/R=0.6 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 19.49 19.62 24.42 24.52 30.70 30.79 
2 41.13 41.70 40.89 41.45 40.50 41.05 
3 69.91 71.16 70.14 71.37 70.60 71.80 
4 100.8 103.0 100.6 102.7 100.1 102.2 
5 133.6 135.9 133.2 136.3 133.1 136.3 

a/R=0.8 a/R=1 a/R=2 
n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 37.32 37.42 43.54 43.70 NA NA 
2 39.97 40.50 39.31 39.82 34.61 34.97 
3 71.47 72.62 73.04 74.08 56.07 56.78 
4 99.57 101.6 98.89 100.9 94.22 95.96 
5 133.0 136.1 132.9 136.0 134.5 136.7 

[02/902] 
a/R=0.2 a/R=0.4 a/R=0.6 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 13.07 13.09 19.32 19.47 26.04 26.37 
2 25.90 25.75 25.66 25.70 25.35 25.57 
3 47.62 47.01 47.94 47.62 48.86 48.84 
4 72.80 71.55 72.42 71.62 71.94 71.58 
5 101.0 98.80 100.7 99.07 100.5 99.37 
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Table 4.5   (continued) 
 

[02/902] 
a/R=0.2 a/R=0.4 a/R=0.6 
a/R=0.8 a/R=1 a/R=2 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 31.88 32.41 35.85 36.60 NA NA 
2 24.96 25.35 24.50 25.04 21.60 22.45 
3 50.96 51.24 54.92 55.55 38.53 40.27 
4 71.38 71.44 70.76 71.22 66.84 68.96 
5 100.4 99.71 100.3 100.1 107.7 109.8 

[45]4 
a/R=0.2 a/R=0.4 a/R=0.6 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 8.285 8.350 10.63 10.72 13.60 13.69 
2 19.49 19.64 19.38 19.53 19.21 19.36 
3 36.74 37.01 36.81 37.08 36.96 37.23 
4 57.83 58.19 57.62 58.00 57.31 57.70 
5 82.20 82.60 82.12 82.56 82.05 82.50 

a/R=0.8 a/R=1 a/R=2 
n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 16.76 16.87 19.86 19.98 28.61 28.78 
2 18.98 19.12 18.69 18.83 16.59 16.72 
3 37.26 37.50 37.69 37.96 46.68 46.99 
4 56.92 57.31 56.42 56.85 53.63 54.10 
5 81.96 82.42 81.86 82.32 81.31 81.83 

[302/602] 
a/R=0.2 a/R=0.4 a/R=0.6 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 8.709 8.842 11.44 11.49 14.82 15.11 
2 20.11 20.36 20.04 20.28 19.90 20.14 
3 37.81 38.29 37.97 38.43 38.22 38.68 
4 59.36 59.96 59.28 59.86 59.09 59.67 
5 84.10 84.82 84.17 84.88 84.22 84.92 

a/R=0.8 a/R=1 a/R=2 
n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 18.36 18.72 21.77 22.19 30.36 30.72 
2 19.69 19.93 19.41 19.65 17.33 17.53 
3 38.64 39.11 39.32 39.82 50.96 51.97 
4 58.81 59.38 58.46 59.02 55.93 56.54 
5 84.25 84.95 84.27 84.96 84.46 85.22 

 



www.manaraa.com

 

 118

Table 4.6 Nondimensional natural frequencies  2 2
112 /a E h    of cantilever curved 

beam (E1 = 138, E2 =8.96, G12= 7.1 GPa, υ12=0.3, 1580  kg/m3) 
 

[0]4 
a/R=0.2 a/R=0.6 a/R=1 a/R=2 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM
1 3.438 3.439 3.460 3.458 3.506 3.498 3.730 3.687 
2 18.99 19.32 18.28 18.31 17.11 17.12 13.95 13.87 
3 46.20 46.40 45.44 45.62 44.16 44.30 39.92 39.85 
4 77.72 78.27 76.89 77.40 75.66 76.11 71.86 72.05 
5 112.0 112.9 108.8 109.6 108.2 109.1 105.5 106.1 

[0/90]s 
a/R=0.2 a/R=0.6 a/R=1 a/R=2 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM
1 3.239 3.245 3.261 3.263 3.304 3.302 3.513 3.485 
2 18.11 18.21 17.43 17.52 16.31 16.39 13.31 13.30 
3 44.51 44.98 43.71 44.16 42.43 42.81 38.33 38.53 
4 75.27 76.29 73.90 74.84 72.70 73.62 69.37 70.09 
5 108.9 110.8 109.0 110.9 109.6 111.3 101.4 102.7 

[02/902] 
a/R=0.2 a/R=0.6 a/R=1 a/R=2 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM
1 1.660 1.659 1.674 1.673 1.700 1.697 1.817 1.807 
2 10.05 10.00 9.807 9.751 9.294 9.231 7.714 7.633 
3 26.74 26.46 26.48 26.19 25.93 25.62 23.89 23.54 
4 49.28 48.45 49.25 48.40 48.85 47.99 47.12 46.19 
5 75.00 73.52 74.38 72.94 72.51 72.66 73.50 71.78 

[45]4 
a/R=0.2 a/R=0.6 a/R=1 a/R=2  

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM
1 1.182 1.191 1.190 1.199 1.205 1.216 1.280 1.299 
2 7.233 7.280 6.978 7.024 6.555 6.598 5.385 5.424 
3 19.74 19.86 19.41 19.53 18.87 19.01 17.12 17.03 
4 36.47 36.70 36.00 36.21 35.57 35.81 34.14 34.47 
5 59.06 59.29 59.03 59.26 59.03 59.28 52.06 52.46 

[302/602] 
a/R=0.2 a/R=0.6 a/R=1 a/R=2 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM
1 1.223 1.238 1.232 1.247 1.248 1.266 1.328 1.354 
2 7.492 7.576 7.265 7.345 6.849 6.924 5.648 5.710 
3 20.38 20.59 20.09 20.29 19.58 19.78 17.88 17.95 
4 38.40 38.73 37.86 38.23 37.30 37.69 35.81 36.33 
5 60.69 61.15 60.92 61.37 61.27 61.75 55.26 56.06 
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The mode shapes for the first five modes of simply supported curved beam with 

a/R=1 and laminate [302/602] are presented in the following figures. One should note the 

twist induced in the mode shapes due to bending-twisting coupling. 

 

 

Figure 4.3   Mode shape number 1 of curved beam with [302/602] laminate 

 

 

 

Figure 4.4   Mode shape number 2 of curved beam with [302/602] laminate 
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Figure 4.5   Mode shape number 3 of curved beam with [302/602] laminate 

 

 

 

Figure 4.6    Mode shape number 4 of curved beam with [302/602] laminate 
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Figure 4.7   Mode shape number 5 of curved beam with [302/602] laminate 

 

 

Comparison to higher order shear deformation theory 

In order to check the accuracy of higher order shear deformation theories, the 

third order theory by Reddy  [6] using modified ABDs is used. The procedure is very 

similar to FSDT. Hence, only formulations are proposed here. 

Kinematic Relations: 
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(54)

The formulation for the first three terms is based on exact integration of deepness 

term. However, the last two terms are derived by expansion of the deepness term since an 

exact integration gives a long expression. Expressing the equations of motion in matrix 

form, gives the following terms of equation 18. 
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By applying displacement functions for simply supported boundary conditions we 

have the following terms in equation 25. 
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 2
33 11 11 55 553C D cF A cD      

Then, making determinant of equation 25 equal to zero gives the natural 

frequencies. The HSDT capability in prediction of natural frequencies for nearly straight 

(a/R=0.1) and nearly deep (a/R=1) composite beams has been compared to present FSDT. 

The results for the first five natural frequencies are presented in table 4.7. 
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Table 4.7 Comparison of nondimensional natural frequencies ( 2 2
112 /  a E h  ) using 

(ABD)e by FSDT and HSDT for shallow and deep beams (E1 = 138, E2 =8.96, 
G12= 7.1 GPa, υ12=0.3, 1580  kg/m3) 

 
a/R=0.1 a/R=1 

[0]4 
n FSDT (Ex) HSDT (Ex) 3D FEM FSDT (Ex) HSDT (Ex) 3D FEM 
1 9.392 9.309 9.358 8.058 7.987 8.006 
2 33.33 32.43 32.96 32.10 31.23 31.68 
3 64.42 61.58 63.27 63.36 60.57 62.15 
4 97.99 92.46 95.79 97.08 91.60 94.81 
5 132.1 123.5 128.7 131.3 122.8 127.9 

[0/90]s 
n FSDT (Ex) HSDT (Ex) 3D FEM FSDT (Ex) HSDT (Ex) 3D FEM 
1 8.873 8.813 8.859 7.613 7.562 7.584 
2 31.85 31.17 31.63 30.68 30.02 30.41 
3 62.26 60.05 61.47 61.23 59.06 60.39 
4 95.53 91.10 93.88 94.64 90.25 92.94 
5 129.6 122.6 126.9 128.8 121.8 126.1 

[02/902] 
n FSDT (Ex) HSDT (Ex) 3D FEM FSDT (Ex) HSDT (Ex) 3D FEM 
1 4.622 6.324 4.611 4.040 NA 4.022 
2 17.86 22.23 17.66 17.53 9.00 17.30 
3 38.10 46.37 37.25 38.13 35.36 37.21 
4 63.47 76.49 61.32 63.84 65.52 61.58 
5 92.31 110.7 88.21 92.98 99.17 88.7 

[45]4 
n FSDT (Ex) HSDT (Ex) 3D FEM FSDT (Ex) HSDT (Ex) 3D FEM 
1 3.298 3.295 3.349 2.830 2.827 2.873 
2 12.96 12.90 12.96 12.48 12.43 12.52 
3 28.30 28.05 28.30 27.84 27.59 27.87 
4 48.41 47.70 48.29 47.97 47.27 47.87 
5 72.31 70.80 71.87 71.90 70.40 71.48 

[302/602] 
n FSDT (Ex) HSDT (Ex) 3D FEM FSDT (Ex) HSDT (Ex) 3D FEM 
1 3.414 3.326 3.481 2.951 NA 3.007 
2 13.39 13.50 13.46 13.00 11.45 13.09 
3 29.19 29.47 29.26 28.93 27.58 29.04 
4 49.80 50.11 49.85 49.69 48.31 49.70 
5 74.19 74.30 73.95 74.23 72.55 73.93 
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The results show that the modified HSDT can accurately predict natural 

frequencies of shallow beams and symmetric deep beams. However, this method 

underestimates the natural frequencies of unsymmetric deep beams and even does not 

give result for the first natural frequency. 

 

Conclusion 

A modified FSDT model that accounts for deepness, laminate couplings, shear 

deformation and rotary inertia was validated for static and free vibration analysis of 

composite curved beams. The proposed model uses deep formulation along with lamina 

modulus for calculation of ABD parameters. The method was verified using 3D FEM 

model. The results showed good accuracy of the model for rectangular beams in static 

and vibration analyses for all kinds of laminates. The model has also been compared to 

HSDT and it is shown that FSDT using modified ABDs provides an accurate set of 

equations for calculating the deflection, stress, and natural frequencies of straight and 

curved beams with arbitrary laminate.  
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CHAPTER V 

 TRANSVERSE VIBRATION ANALYSIS OF GENERALLY LAMINATED 

 MULTI-SEGMENT COMPOSITE SHAFTS WITH A LUMPED MASS  

 

Introduction  

Higher strength and stiffness to weight ratios along with the ability to tailor the 

design for specific purposes, have led to the extensive use of composite materials. Their 

weight savings in different industries such as aerospace or automotive has been of great 

interest because of its general positive impact on fuel economy, durability as well as other 

attributes including noise, vibration and harshness (NVH). In recent years, metal shafts 

are being targeted for possible replacement with composite ones in many applications 

such as helicopters, automotive vehicles and centrifugal separators. Considerable research 

has been dedicated to vibration analysis of shafts using beam and shell theories. Singh et 

al. [1] reviewed the developments in dynamics analysis of composite shafts in 1997. Kim 

et al. [2] investigated the free vibration of a rotating tapered composite Timoshenko shaft 

using Galerkin method. 

Song et al. [3] addressed problems related to the implications of conservative and 

gyroscopic forces on vibration and stability of a circular cylindrical shaft modeled as a 

thin-walled spinning composite beam. Chang et al. [4] considered a composite shaft 
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containing discrete isotropic rigid disks and supported by bearings modeled as springs 

and viscous dampers. They incorporated the transverse shear deformation, rotary inertia 

and gyroscopic effects, and validated their model for shafts with bending-twisting 

coupling. Chang et al.  [5] performed vibration analysis of rotating composite shafts 

containing randomly oriented reinforcements. Gubran and Gupta  [6] analyzed the natural 

frequencies of composite tubular shafts using equivalent modulus beam theory with shear 

deformation, rotary inertia and gyroscopic effects included. Their approach took into 

account different terms in the ABD matrix. Their results were compatible with those of 

layerwise theory [7]. Banerjee and Su  [8] developed the dynamic stiffness matrix of a 

spinning thin-walled composite beam and investigated its free vibration characteristics 

based on the classic beam theory (CBT). They included bending twisting coupling 

effects. Na et al.  [9] studied vibration and stability of a circular cylindrical shaft modeled 

as a tapered thin-walled composite beam, spinning with constant speed and subjected to 

an axial compressive force. Sino et al. [10] introduced a homogenized FEM which took 

into account internal damping of the beam and evaluated natural frequencies and 

instability thresholds of an internally damped rotating composite shaft. Qatu and Iqbal 

[11-12] studied transverse vibration of two-segment shafts using CBT. Their formulation 

was limited to long simply supported shafts with cross-ply laminates.  

In this chapter, a shear deformation beam model that can accurately predict 

natural frequencies of generally laminated multi-segment shafts is presented. It is used 

here to obtain natural frequencies of two segment shafts and can be used by researchers 

and practicing engineers. 
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Complexities in analysis of laminated shafts 

There are three complexities in the analysis of composite two-segment thick 

shafts: different segments, shear deformation, and material couplings. These effects have 

not been considered simultaneously in the literature. In this chapter, a simple method is 

proposed that considers all of these problems. 

 

Effect of shear deformation 

The inclusion of shear deformation in the analysis of beams was first made by 

Timoshenko [13] and this inclusion has been incorporated by many researchers. This 

effect is higher in composite materials because their longitudinal to shear modulus ratio is 

much higher than metallic materials. Consequently, the assumption of classical Euler-

Bernoulli theory is not accurate. However, some researchers used this theory especially 

for getting exact solutions of long shafts [8,11-12]. In this chapter, a first order shear 

deformation theory (FSDT), where both shear deformation and rotary inertia are 

considered, is used.  

 

Multi segment shafts 

The driveshafts design is mostly dictated by its natural frequencies. In order to 

maximize the natural frequencies, shafts are built in one, two or more segments. Multi-

segmented shafts or drivelines are usually analyzed as separate independent isolated 

segments, each of which is simply supported [14-15]. In such systems, the effect of one 

shaft segment bending stiffness on the other shaft cannot be ignored. This effect has a 
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significant impact on the first natural bending frequency. This was observed for multi-

segment metallic shafts [11-12]. 

 

Material coupling 

The coupling complexity arises from the laminate sequence. In some applications, 

the structure is very weight limited or the laminate design is going to be tailored in order 

to get the required natural frequencies. In such applications, the laminate usually has one 

of the material couplings that should be taken into account in the analysis of the structure. 

In typical beam models, 18 parameters in the ABD stiffness matrix are reduced to 

only 3 parameters (A11, B11, D11) and only one term of the bending-stretching coupling is 

taken into account (i.e. B11). If other coupling terms are not zero, there will be errors 

leading to inaccurate results. This complexity has been shown to be very important and 

introduces errors in the analysis [4,6,8,17]. This problem raises the need to redefine the 

stiffness parameters so that the couplings can be considered in these three stiffness terms. 

Some researchers defined other stiffness parameters for shafts [18-20].  

Another problem that appears in asymmetric laminates is that in-plane and out-of-

plane vibrations are coupled and those equations must be solved together. But for in-

plane flexural vibrations, this has a very little effect  [20]. However, for out-of-plane or 

more importantly extensional modes, this effect is high and the equations should be 

solved coupled together.  

Hajianmaleki and Qatu [20] showed that using equivalent modulus of elasticity of 

each lamina, one can get accurate results for static and dynamic analyses of generally 
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laminated beams with any kind of coupling. The equivalent modulus of elasticity of each 

lamina is found using equation 1. 

       4 4
2 212

11 12 11 22

cos sin21 1
cos sink k

k kk
xE E G E E

   
 

    
   

(1)

Figure 5.1 shows the cross sectional geometry of the shaft. Using modified 

stiffness parameter for the shaft, we have for ABD terms 

 
N

(k) 2 2
11 x k k 1

k 1

A E r r 


    (2)

 
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(k) 4 4
11 x k k 1

k 1

D E r r
4 




   (3)

where r is external radius of the each layer. The B11 formulation has been taken from 

research by Chan and Demirhan  [19] 

   4 2 2 4 2 2
11 11 12 66 22 1

1

3
s 2 s

8

n

k k
k

B R c Q c Q Q Q z z 


       
  (4)

where    cos , sinc s   ,   is the lamina angle relative to the shaft axis and z is the 

distance from middle layer through the thickness. 

 

 

Figure 5.1 Cross sectional geometry of composite shaft 
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Formulation 

Kinematic relations 

In the FSDT formulation, the displacements, curvature changes and strains are 

0 0,u u z w w     (5)

0
0

u

x
 




,     
x

 



, 
w

x
 
 


 (6)

where u and w are displacements in x and z directions; respectively. 0 is middle surface 

strain,  is the shear strain at the neutral axis and  is the rotation of a line element 

perpendicular to the original direction, respectively. Normal strain at any point is 

0 z     (7)

Force and moment resultants as well as shear forces are calculated using  
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(8)

where for A55 we have 

55 55A kQ A  (9)

where A is cross sectional area and k is shear correction factor that is assumed to be 0.5 

for tubular cross sections. 

 

Equations of motion 

The equations of motion are 

2 2
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x t t
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(10)
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  

  
 

(12)

where for tubular cross sections 

     ( ) 2 2 4 4
1 2 3 1 1

1

1
, , ,0,

4

N
k

k k k k
k

I I I r r r r  


    
 

  (13)

Expressing equations of motion in terms of displacement we have in matrix form 

11 12 13 0 1 2 02

21 22 23 0 1 02

31 32 33 2 3

0

0 0

0 0

x

z

L L L u I I u p

L L L w I w p
t

L L L I I 

         
                    

                  

 (14)

where 

2

11 11 2
L A

x





, 

2

22 55 2
L A

x


 


,

2

33 11 552
L D A

x


 


, 

2

13 31 11 2
L L B

x


 


 

 21 12 0L L  , 23 32 55L L A
x


  


 

(15)

In this chapter a numerical method named the General Differential Quadrature 

(GDQ) is used to solve the equations. The method has been used by several investigators 

[22-24]. In this method, the derivative of a function is approximated by a weighted linear 

sum of the function values at all the discrete points. 

 
( )

( )

1

( )n N
ni

ij j
j

dF x
C F x

dx 

   (16)

Generally, by considering the Lagrange interpolation polynomials as test 

functions, the coefficients for the first order derivative become 

(1)
,

( )

( ) ( )
i

ij i j
i j j

M x
C

x x M x 


 (17)
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1,

( ) ( )
N

i i j
j j i

M x x x
 

 
 

(18)

for higher order derivatives 

  ( ) (1) ( 1) ( 1)
, . /n n n

ij i j ij ii ij i jC n C C C x x 
     (19)

and for all derivatives 

( ) ( )

1,

N
n n

ii ij
j j i

C C
 

  
 

(20)

The sampling points are selected based on the Chebyshev–Gauss–Lobatto (C–G–

L) grid distribution to get denser population near boundaries. 

 1
1 cos

2 1i

ia
x

N

  
      

 (21)

 

Boundary conditions 

 The following boundary conditions can be applied at the ends (x=0, l).  

Simply supported (S1):  0w N M    (22)
Simply supported (S2):  0w u M    (23)
Clamped (C1): 0N w     (24)
Clamped (C2): 0u w     (25)
Free (F1): 0N M Q    (26)
Free (F2): 0u M Q    (27)

Simply supported boundary (S1) boundary condition has been considered for case 

studies in this chapter. The hinge boundary conditions will consist of continuity of 

displacement functions and shear force as well as zero moment condition. For example in 

a two-segment shaft with length of l1 and l2 and coupling masses m1 and m2 (Figure 5.2), 

the following boundary condition would be applied. 
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Figure 5.2 Two-segment shaft with hinge connection 

 

   1 1 2, 0,u l t u t  (28)

   1 1 2, 0,w l t w t  (29)

           2 2
1 1 1 1 2 2

55 1 1 1 2 22 2

, , 0, 0,
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w l t w l t w t w t
A l t m t m

x t x t
 
      

             
 (30)

   1 1 1 1
11 11

, ,
0

u l t l t
B D

x x
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 

 
 

(31)

   2 2
11 11

0, 0,
0

u t t
B D

x x

 
 

 
 

(32)

 For multi-segment shafts these boundary conditions should be applied at any 

hinge location. Application of GDQ method along with boundary conditions to the 

equations of motion will give a system of equations in matrix form. The eigenvalues of 

the system would be natural frequencies that are assessed using MATLAB. The results 

would then be compared to the published literature and FEM in the next section.  

 
 
Numerical results 

In this section, the present method is compared to different models in the literature 

in special cases and also to finite element models. A convergence study was first done for 

the GDQ analysis and it was found that using 11 points in the length yields convergent 

results for the first 3 significant figures. 
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In order to verify the model, as the first case the experimental results for a 

boron/epoxy helicopter driveshaft provided by Zinberg and Symonds  [25] is used. A 

number of researchers have worked on this shaft with different beam and shell models 

and their results along with the present FSDT and CBT method  [8] are shown in Table 

5.1. The material and geometrical parameters are given below 

E1 = 211 GPa, E2 = 24 GPa, G12 = G13 = G23 = 6.9 GPa, ν12= 0.36, density = 1967 

kg/m3), length = 2470 mm, mean diameter = 126.9 mm, thickness = 1.321 mm, laminate 

[90/45/-45/06/90] from inner to outer.  

 

Table 5.1   Boron-epoxy shaft fundamental natural frequencies (Hz) by different authors 
(E1 = 211, E2 = 24, G12 = G13 = G23 = 6.9 GPa, ν12= 0.36,  = 1967 kg/m3),       
l = 2470 mm, mean diameter = 126.9 mm, thickness = 1.321 mm laminate 
[90/45/-45/06/90]  

 
Author Method used Frequency (Hz)

Zinberg, Symonds  [25] Measured experimentally 91.67 
Chang et al.  [191] Continuum based Timoshenko Beam 96.03 

Singh and Gupta  [54] Effective Modulus Beam Theory 95.78 
Qatu and Iqbal  [10] Finite element analysis using ABAQUS 95.4 

Sanders shell theory 97.87 
Kim and Bert  [16] 

Donnell shallow shell theory 106.65 
Bresse–Timoshenko beam theory 96.47 

Bert and Kim  [17] 
Euler–Bernoulli beam theory 102.47 

dos Reis et al.  [27] 
Bernoulli–Euler beam theory. Stiffness 

determined by shell finite elements 
82.37 

Beam CBT 96.12 
Present study 

Beam SDBT 90.36 
 
 
For single-span simply supported shafts, the exact solution using trigonometric 

functions for displacements, (as proposed in Chapter III) can be used. The results show 

that most of the models can predict the natural frequencies of this shaft. However, the 
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FSDT used in this chapter is the most accurate model for this case and predicts the natural 

frequency with 1 percent error.  

The effect of ply orientation on reduction of stiffness and consequently natural 

frequency of a AS4 graphite-epoxy shaft is provided by Bert and Kim  [17]. The shaft has 

the same geometry as the previous boron/epoxy shaft and the material properties are 

(E1=139, E2 = 11, G12 = G13 = 6.05, G23 = 3.78 GPa, ν12 = 0.313,  = 1478 kg/m3). Their 

results for the first natural frequency and output of the present model using CBT  [8], 

FSDT and a shell FEM model are presented in Table 5.2. 

 

Table 5.2 Effect of lamination angle on fundamental natural frequencies (Hz) of a AS4-
epoxy shaft. (E1 = 139, E2 = 11, G12 = G13 = 6.05, G23 = 3.78 GPa, ν12 = 0.313, 
 = 1478 kg/m3) 

 
Lamination angle 

Theory 
0 15 30 45 60 75 90 

Sanders Shell  [17] 92.12 72.75 50.13 39.77 35.33 33.67 33.28

Bernoulli-Euler  [17] 107.08 89.88 71.15 52.85 38.2 31.42 30.22
Bresse-Timoshenko  [17] 101.2 86.82 69.95 52.38 37.97 32.9 30.05
Present CBT approach 108.42 71.12 46.05 36.15 32.17 30.78 30.5

Present SDBT approach 100.99 70.01 45.85 36.04 32.07 30.66 30.27
Present FEM analysis 100.28 68.8 45.51 35.9 31.96 30.57 30.27

 
 
Results show that the Sanders shell theory and both CBT theories have errors in 

predicting the natural frequencies. The Bresse-Timoshenko theory only have accurate 

results in [0] and [90] laminate where bending-twisting coupling is not present. However, 

the present model while being simple (1D beam model) is the closest to FEM in all cases. 

It also shows the decrease in the natural frequencies by lowering stiffness and bending 

twisting coupling. 
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In order to check the ability of the model in multi-segment shafts, exact solution 

to the Euler-Bernoulli beam theory for a cross-ply graphite-epoxy shaft conducted by 

Qatu and Iqbal  [10] has been compared to the present method.  Figure 5.2 shows the shaft 

geometry and parameters. The shaft OD was 60 mm and the thickness was 1.5 mm. The 

material properties are (E1 = 138, E2 =8.96, G12= 7.1 GPa, υ12=0.3, ρ =1580 kg/m3, l=2, 

OD=0.06, t=0.0015 m). The results of first five natural frequencies for different joint 

locations are presented in Table 5.3 and match well with those obtained in Ref.  [10]. As 

expected, one can see that the difference between classic and shear deformation model 

increases with mode number. The effective length (length of the half sine wave of the 

mode) becomes less for higher modes and the classic model assumption leads to 

inaccurate results.  

The capability of the model for generally laminated two-segment shafts is the next case to 

be verified. Since such results do not exist in the literature, the authors created a finite 

element model using shell elements in ANSYS software to validate the model. The 

geometry and material properties are the same as the previous cross-ply shaft. In the finite 

element model, the shaft is created using Shell99 composite shell element and the joint is 

created using MPC184 element. The results of the first natural frequency for different 

coupling locations with bending-twisting coupled and bending-stretching coupled 

laminates are presented in Table 5.4 and 5.5. The geometry and material properties are 

the same as the previous cross-ply shaft in Table 5.4. But the diameter is reduced to 20 

mm in Table 5.5 to see if decreasing the radius affects the method. The results show a 

high level of accuracy for different laminates. The results show a high level of accuracy 

and the error is not more than 1 percent in almost all cases. 
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Table 5.3 Comparison of natural frequencies of a simply supported two-segment graphite epoxy 
shaft (Hz) with Ref [10]  (E1 = 138, E2 =8.96, G12= 7.1 GPa, υ12=0.3, ρ =1580 kg/m3, 
l=2, OD=0.06, t=0.0015 m) 

 
Ref [10] Present 

both [0] 

l1/l Mode I II III IV l1/l I II III IV 

0.1 138.2 450.9 945 1619.8 0.1 133.3 405.4 771.8 1186.6 

0.2 164.8 544.4 1143.2 1906.7 0.2 158.3 479.9 897.8 1328.6 

0.3 203.6 665.3 1072.6 1576.8 0.3 193.6 568.3 864.1 1177.8 

0.4 258.5 594.1 989.1 1906.7 0.4 242.1 520.2 808.9 1329.2 

0.5 305.0 476.5 1220.2 1544.2 0.5 281.1 432.7 940.9 1167.6 

both [90] 

l1/l Mode I II III IV l1/l I II III IV 

0.1 35.1 114.6 240.2 411.8 0.1 34.8 112.8 233.9 394.9 

0.2 41.9 138.4 290.6 484.7 0.2 41.6 136.2 282.2 462.8 

0.3 51.7 169.1 272.7 400.8 0.3 51.4 166.1 265.2 385.5 

0.4 65.7 151 251.4 484.7 0.4 65.1 148.5 245.0 463.0 

0.5 77.5 121.1 310.2 392.5 0.5 76.8 119.5 300.8 377.8 

1st [0], 2nd [90] 

l1/l Mode I II III IV l1/l I II III IV 

0.1 35.3 114.5 240.5 412.8 0.1 35.0 112.8 234.0 395.2 

0.2 51.9 128.8 294.1 508.1 0.2 41.7 136.6 285.3 483.3 

0.3 51.9 175.2 374.2 646.3 0.3 51.5 171.9 360.0 604.8 

0.4 67.3 230.9 483.6 667.8 0.4 66.7 225.1 455.4 596.6 

0.5 92.2 309.1 443.4 741.6 0.5 91.1 296.2 410.1 688.1 
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Table 5.4 Comparison of first natural frequencies for simply supported two-segment 
bending-stretching coupled graphite-epoxy shaft with FEM (Hz) (E1 = 138, E2 
=8.96, G12= 7.1 GPa, υ12=0.3, ρ =1580 kg/m3, l=2, OD=0.06, t=0.0015 m) 

 
Laminate [0/90/0/90] [90/90/0/0] 

l1/l Present FEM Present FEM 

0.1 32.628 33.556 29.962 31.06 

0.2 38.884 39.706 35.757 36.699 

0.3 47.962 48.826 44.152 45.102 

0.4 60.853 61.796 56.029 57.065 

0.5 71.693 72.776 66.412 67.192 

 
Table 5.5   Natural frequencies comparison of bending-twisting coupled laminated simply 

supported two-segment graphite-epoxy shaft with FEM (Hz) (E1 = 138,            
E2 =8.96, G12= 7.1 GPa, υ12=0.3, ρ =1580 kg/m3, l=2, OD=0.02, t=0.0015 m) 

 
l1/l Laminate 0 15 30 45 60 75 90 

Present 133.3 92.90 60.56 45.99 39.02 35.78 34.80 
0.1 

FEM 133.4 93.43 61.10 46.36 39.23 35.87 34.88 

Present 158.3 110.7 72.29 54.94 46.62 42.75 41.60 
0.2 

FEM 158.3 111.2 72.91 55.34 46.84 42.84 41.65 

Present 193.6 136.1 89.10 67.76 57.52 52.76 51.40 
0.3 

FEM 193.0 136.4 89.79 68.24 57.77 52.85 51.40 

Present 242.1 171.5 112.8 85.87 72.94 66.91 65.10 
0.4 

FEM 239.7 169.5 113.4 86.43 73.23 67.01 65.17 

Present 281.1 200.7 132.7 101.2 86.00 78.90 76.80 
0.5 

FEM 281.5 200.7 133.7 101.9 86.35 79.02 76.85 

Avg. error (%) 
-0.22 0.02 0.77 0.72 0.45 0.19 0.10 
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As the last case, the effect of coupling mass on bending natural frequencies of the 

previous shaft is presented at Table 5.6. It shows that the fundamental frequency is 

reduced by 23% for length ratio of 0.2 and 14% for length ratio of 0.2 when 1 kg of 

combined mass is present. The lumped mass does not have any effect on the fourth mode 

because a nodal line in that mode passes through these masses. 

 
Table 5.6 Natural frequencies (Hz) of two-segment graphite-epoxy shaft with different 

lumped masses and [0] laminate in both shafts (E1 = 138, E2 =8.96, G12= 7.1 
GPa, υ12=0.3, ρ =1580 kg/m3, l=2, OD=0.06, t=0.0015 m) 

 
l1/l =0.2 l1/l =0.4 

m1+m2 Mode I II III IV m1+m2 I II III IV 

0 158.3 479.9 897.8 1328.6 0 242.1 520.2 808.9 1329.2

0.25 133.5 442.3 865.2 1328.6 0.25 221.1 461.3 726.3 1329.2

0.5 126.7 434.4 858.2 1328.6 0.5 213.9 446.1 713.5 1329.2

0.75 123.6 431.0 855.2 1328.6 0.75 210.3 439.4 708.5 1329.2

1 121.7 429.1 853.5 1328.6 1 208.1 435.7 705.9 1329.2

 

Conclusion 

A modified FSDT model that accounts for multi-segments, lumped mass, different 

laminates, shear deformation and rotary inertia was validated for transverse vibration 

analysis of composite shafts. The proposed model uses lamina modulus for calculation of 

ABD parameters. The method was verified using results in the literature and finite 

element models. The results showed good accuracy of the model for multi-segment shafts 

in transverse vibration analyses for all kinds of laminates. This model provides an 

accurate set of equations for calculating the natural frequencies of composite multi-

segment shafts with lumped mass and arbitrary laminate.  
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CHAPTER VI 

 CONCLUDING REMARKS 

 
 

A modified FSDT model was proposed for static and vibration analysis of 

composite beams and shafts. It has been shown that using one dimensional modulus of 

elasticity of each ply for calculation of A11, B11, and D11, one can perform accurate 

analysis of static and vibration behavior for composite beams and shafts with any 

laminate. The results were compared to 3D FEM and FSDT has been shown to be 

accurate enough for the analysis and GDQ method to be accurate for analysis of different 

boundary conditions.  

The deepness term is exactly integrated into A11, B11, and D11, equations and it is 

concluded that using modulus of elasticity along with deep formulation for stiffness 

parameters, the FSDT model can provide accurate analysis for curved beams. The results 

compared to those obtained by a converged FEM 3D model, showed good accuracy. The 

model has also been compared to TSDT and it is shown that TSDT using modified ABDs 

is not accurate for asymmetric laminates. It increases the labor but it does not add 

accuracy for vibration analysis.  

The modified stiffness parameters for shafts has been proposed and used for 

transverse vibration analysis of multi-segments composite shafts with lumped mass. The 

model accounted for multi-segments, lumped mass, different laminates, shear 
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deformation and rotary inertia. The proposed FSDT model was verified against results in 

the literature and finite element models. The results showed good accuracy of the model 

for multi-segment shafts in transverse vibration analyses for all kinds of laminates. 

The model proposed in this thesis, provides an accurate set of equations for 

analysis of different types of beams (straight and curved) and shafts with arbitrary 

laminate for engineers and scientists. It can be expanded to treat shafts with lumped 

masses (e.g. gears) and other complexities. As a future work, an element can be 

developed based on the FSDT model in this thesis in order to solve the problem of beams 

with varying cross section, tapered or complicated geometry. 
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APPENDIX A 

NONDIMENSIONAL MAXIMUM DEFLECTION, MOMENT AND NATURAL 

FREQUENCIES OF SIMPLY SUPPORTED CURVED BEAM WITH 

a/h=10 
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Table A.1 Nondimensional maximum deflection and moment of simply supported curved 
beam with a/h=10 (E1 = 138, E2 =8.96, G12= 7.1 GPa, υ12=0.3) 

 
[0] [0/90]s [0/90] [45] [30/60] 

a/R Method 
w M w M w M w M w M 

FSDT (Ex) 2.245 3.140 2.455 3.140 7.6623.140 14.65 3.140 13.68 3.140
0.2 

3D FEM 2.339 3.304 2.553 3.092 7.8723.240 14.42 3.223 13.46 3.160

FSDT (Ex) 2.396 3.248 2.620 3.248 8.0363.248 15.64 3.248 14.51 3.248
0.6 

3D FEM 2.520 3.425 2.747 3.210 8.3113.360 15.42 3.337 14.31 3.295

FSDT (Ex) 2.747 3.489 3.004 3.489 9.0603.489 17.95 3.489 16.55 3.489
1 

3D FEM 2.939 0.000 3.197 3.420 9.46 3.580 17.75 3.589 16.42 3.519

FSDT (Ex) 6.205 5.319 6.786 5.319 19.635.319 40.69 5.319 36.94 5.319
2 

3D FEM 7.096 5.735 7.657 5.274 21.25 5.52 40.78 5.505 37.32 5.415
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Table A.2 Nondimensional natural frequencies ( 2 2
112 /  a E h  ) of simply supported 

curved beam with a/h=10  (E1 = 138, E2 =8.96, G12= 7.1 GPa, υ12=0.3,  =1580 
kg/m3) 

 
[0]4 

a/R=0.2 a/R=0.4 a/R=0.6 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 8.286 7.999 8.136 7.847 7.892 7.599 
2 24.46 22.63 24.35 22.52 24.17 22.34 
3 41.48 37.48 41.39 37.40 41.25 37.27 
4 58.21 52.03 58.14 51.97 58.03 51.87 
5 74.66 66.94 74.60 66.89 74.50 66.81 

a/R=0.8 a/R=1 a/R=2 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 7.559 7.262 7.145 6.845 4.194 3.923 
2 23.91 22.08 23.59 21.76 21.00 19.21 
3 41.06 37.09 40.81 36.85 38.76 34.94 
4 57.87 51.73 57.67 51.55 56.00 50.08 
5 74.37 66.69 74.20 66.54 72.79 65.30 

[0/90]s 
a/R=0.2 a/R=0.4 a/R=0.6 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 7.918 7.655 7.775 7.511 7.541 7.276 
2 23.85 22.01 23.74 21.90 23.56 21.73 
3 40.87 36.65 40.79 36.58 40.65 36.45 
4 57.68 51.06 57.61 51.00 57.50 50.90 
5 74.19 65.95 74.13 65.90 74.04 65.82 

a/R=0.8 a/R=1 a/R=2 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 7.223 6.956 6.828 6.560 4.009 3.775 
2 23.31 21.48 23.00 21.18 20.47 18.72 
3 40.46 36.27 40.21 36.05 38.20 34.20 
4 57.34 50.76 57.14 50.58 55.49 49.13 
5 73.91 65.70 73.74 65.54 72.34 64.29 

[02/902] 

a/R=0.2 a/R=0.4 a/R=0.6 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 4.468 4.375 4.425 4.328 4.327 4.227 
2 15.92 14.96 15.96 14.97 15.95 14.95 
3 30.94 27.97 31.03 28.03 31.09 27.98 
4 47.36 41.64 47.49 41.72 47.58 41.77 
5 64.23 55.27 64.37 55.35 64.48 55.41 
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Table A.2 Continued 
 

[02/902] 

a/R=0.8 a/R=1 a/R=2 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 4.177 4.074 3.977 3.872 2.395 2.302 
2 15.89 14.87 15.78 14.75 14.52 13.44 
3 31.11 28.04 31.08 27.98 30.31 27.13 
4 47.64 41.79 47.67 41.78 47.23 41.27 
5 64.56 55.45 64.61 55.48 64.36 55.27 

[45]4 

a/R=0.2 a/R=0.4 a/R=0.6 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 3.221 3.226 3.164 3.168 3.069 3.073 
2 12.09 11.90 12.03 11.85 11.94 11.64 
3 24.77 23.69 24.72 23.65 24.64 23.59 
4 39.66 38.22 39.62 38.19 39.55 38.15 
5 55.71 51.99 55.68 51.96 55.62 51.92 

a/R=0.8 a/R=1 a/R=2 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 2.940 2.943 2.780 2.782 1.634 1.632 
2 11.82 11.64 11.67 11.49 10.42 10.31 
3 24.54 23.50 24.40 23.38 23.25 22.37 
4 39.46 38.09 39.33 38.02 38.31 37.61 
5 55.53 51.85 55.42 51.77 54.50 51.09 

[302/602] 

a/R=0.2 a/R=0.4 a/R=0.6 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 3.338 3.345 3.290 3.294 3.202 3.205 
2 12.46 12.25 12.44 12.23 12.39 12.18 
3 25.39 24.22 25.41 24.23 25.39 24.22 
4 40.46 38.80 40.50 38.84 40.51 38.87 
5 56.61 52.65 56.66 52.69 56.69 52.72 

a/R=0.8 a/R=1 a/R=2 

n FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM FSDT (Ex) 3D FEM 
1 3.077 3.077 2.918 2.916 1.730 1.720 
2 12.30 12.08 12.17 11.96 11.02 10.91 
3 25.34 24.17 25.26 24.10 24.37 23.27 
4 40.50 38.89 40.45 38.89 39.79 38.79 
5 56.70 52.72 56.68 52.71 56.19 52.40 
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